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1. Introduction

Let G be a mixed abelian group and let R = E(G) denote the
endomorphism ring of G. This paper investigates the problem: under which
conditions is the ring R is a von Neumann regular or a right principal
projective (pp) ring?

The question as to when the ring of endomorphisms of an abelian group,
or more generally of a module over a ring, satisfies some homological property
has been studied by many authors. For a representative, but by no means
complete, sample of papers on von Neumann regular, hereditary and pp
endomorphism rings see ([A], [H-P], [Kr], [Kh], [L], [P, [F-R], [R-1], [R-2],
[R-3]). In addition, a good discussion of properties of endomorphism rings of
abelian groups can be found in Fuchs' book [F). We remark that, for T a
torsion group, our problem, posed in the first paragraph, has a nice solution. In
[R-1] it is shown that, if T =eT_, where T _ denotes the p-component of T,
then E(T) is (right or Ieft) pp if and only if each T_ is either divisible or
elementary (pT_ = 0). In [F-R] the authors prove that E(T) is von Neumann

regular if and only if each T,

b is elementary.
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Of particular interest to us, in the mixed case, were the works of
Rangaswamy [R-1], [R-2], [R-3] and of Fuchs and Rangaswamy [F-R], which
investigated Baer, pp (called weak Baer in [R-1]) and von Neumann regular
endomorphism rings. More specifically, in [R-1] it was shown that, for a large
class of mixed abelian groups G with pp endomorphism rings, G can be
embedded as a pure subgroup of IlG_ containing @G_. Additionally each Gp
must be an elementary p-group. Here Gp denotes the p-torsion subgroup of
G. Reversing the outlook, we ask: if G is a mixed group with each G
elementary, embedded as a pure subgroup of IlG_ containing &G _, when is
R a pp or a von Neumann regular ring? If the torsion-free rank of G is finite,
we can obtain fairly definite answers to these questions in terms of a maximal
independent torsion-free subset of G and an associated matrix algebra. This is
done in Section 3, Theorems 3.5 and 3.8. In Section 4 we consider the case
when R = E(G) is commutative, or, equivalently, when rank G_<1 forall p.
Our main result here is that, for S an infinite set of primes, each pure subgroup
of npsSZ(p) containing epeSZ(p) that is of finite torsion-free rank has a
von Neumann regular endomorphism ring. Here Z(p) is the cyclic group
of order p.

2. Definitions and known results

Throughout the paper G will be a mixed abelian group and R will be
the endomorphism ring of G. Weregard G as a left R = E(G) module. For a
prime p, G_ will denote the p-torsion subgroup of G. Let
S= SG = {p| Gp # 0). To avoid wrivialities, we always will assume that, for
each group G under consideration, the set SG is infinite. A mixed group G
is called S-local if pG=G forall p¢ SG' Aring R is (right) pp if every
principal right ideal of R is projective, equivalently if the right annihilator in
R of every element of R is generated by an idempotent.

It is well known that von Neumann regular rings are pp, but the converse
does not necessarily hold, even for endomorphism rings ([R-1]). If R = E(G)
both the von Neumann regular and pp properties of R are reflected by the
behavior of kernels and images.
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Theorem 2.1 Let G be an abelian group with endomorphism ring R.
Then:

(1) ([F-R]) R is von Neumann regular if and only if for every AeR
both ker A and im A are direct summands of G.

(2) ([R-1)) If, forevery A €R, ker A is a direct summand of G then
R is pp. Indeed, if e:G - ker A is any projection, then the right annihilator of
A in R is eR,

(3) ([R-1]) Suppose G is a mixed S-local reduced group. Further
suppose that R = E(G) is pp. Then, forevery A €R, ker A is a direct
summand of G.

The next theorem, slightly translated from [R-1], provided our main
motivation for this paper. A sketch of the proof is included for the reader's

convenience. Let lekZ denote the ring of integers mod pk.

Theorem 2.2. Let G be a mixed reduced S-local group with R = E(G)
a pp ring. Then each Gp is elementary and G can be embedded as a pure
subroup of Hp eSGp containing ep 8SGp'

Proof. If E(G) isppand H is a summand of G then E(H) = eE(G)e
where e is a projection of G onto H. It follows that E(H) is also pp.

Since, for k > 1, E(Z(pk)) = Z/ka is not pp, the group G can have no

Z(pk) summand for k > 1. Hence each G must be an elementary p-group.
Thus, for each p €S, we have G=G_e H_. Furthermore H_ must be
p-divisible, otherwise there would be a nonzero map from Hp/pl-lp into Gp
which would provide a A ¢ R such that AR is not projective. Define
1:G-1I1 D eSGp by ug) = (xp(g)) where rrp is a projection of G onto G_.
It is not hard to check that ker 1 is a divisible subgroup of G; hence ker 1 =0
and 1 is an embedding. Finally, one can check that ep eSGp < (G) and that
«G) is pure in np&SGp'

In [L] itis shown thatif R =E(G) and A €R with im A a direct
summand of G then RA is projective. Thus, we have the left handed version
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of Theorem 2.1 (2): If im A is a direct summand of G foreach A &R then
R is left pp. Curiously, the left handed version of Theorem 2.1 (3) fails. In
Example 4.3 we construct a mixed reduced S-local group G with
endomorphism ring R such that R is commutative pp but not von Neumann
regular. In view of Theorem 2.1 (1) and (3), we cannot have im A a summand
of G foreach A &R,

3. The finite torsion-free rank case

Throughout this section G will be a mixed abelian group with
TWG) = ep eSGp <G<Il b eSG b (we use the symbol < to denote a pure
subgroup). Note that under these assumptions G/T(G) will be a divisible
torsion-free group. We regard G/T(G) as a Q-vector space. We also assume
that each G is elementary and regard each G_ as a vector space over the
field Z/pZ. In view of Theorem 2.2 such groups G are the only candidates
for mixed reduced S-local groups with pp endomorphism rings. We investigate
the exact conditions under which such a group G will have a pp or a
von Neumann regular endomorphism ring.

Henceforth, we will often drop reference to the (necessarily infinite)
index set SG ={p| G, # 0}, if there is no need to refer to it, and just write
oG p O MG for the direct sum or product over all primes p in S. When
discussing a mixed group G, all primes referred to are always assumed to be in
the appropriate SG'

To make our problem more tractable we work in the finite torsion-free
rank case, that is we assume that the dimension of the Q-vector space G/T(G)
is finite. If the torsion-free rank of G is equal to n we call a subset
X = [xl. ‘..,xn} c G such that [x1+T(G), ...,xn+T(G)} is a Q-basis for
G/T(G) a maximal independent set in G. If X c G is a maximal independent
set then G <TIG_ has the following simple description: G is the set of all
elements g = (g ) e [IG_ such that there exists rational numbers o, .
and a natural number k (depending on g), such that p >k implies
g o= alxlp + ..+ anxnp’ Here X; denotes the p-component of X; € HGP.
Note that, for any rational number o = a/b in reduced form, and for any prime
p with p > |b|, & has an unique interpretation as an element of Z/pZ. Thus,

n
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for any fixed finite set of rationals [al, ....an], the expression
O X+ et O X will make sense for almost all primes p.

If R =E(G) then Rp, the p-torsion subgroup of R, can be naturally
identified with E(G_). Since the restriction map A -+ MT(G) isa
monomorphism from R into E(T(G)) = ITE(G ) =IIR , we can regard
Rc an ([R-11). In this setting R is simply the subring of l'lRp = I[TE(G p)
consisting of all maps which send G into G. As a consequence, R is a pure
subring of TIR . The following lemma provides a useful criterion for deciding
when an element of l'lRp is an endomorphism of G.

Lemma 3.0. With notation as above, A e IR _ is an endomorphism of
G if and only if A(X) cG for any maximal independent set X c G.

Proof. Suppose X = [xl, . xn} is a maximal independent subset of
G and A elIR_ with A(X)cG. Since I'IRp = End(IIG_) and &G _ is the
torsion subgroup of both- G and HGP, it follows that, for any g € G of finite
order, A(g) eaG_c G. Let g €G be an element of infinite order. Since
X= {xl, ey X n} is a maximal independent set, there is a dependence relation
mg = Zmixi, with m and the m's integers, m # 0. Thus
mA(g) = A(mg) = Zmil(xi) €G. Since G is pure in IIG_ it follows that
mA(g) = mg', for some g €G. Thus m(A(g) - g) =0. Hence (A(g) - g) €G.
Therefore, A(g) =g + (A(g) - g) isin G and the proof is complete.

Fix a maximal independent set X c G. Let X = (x1+T, ...,xn+T] be
the basis of G = G/T(G) obtained from X. Each A € R induces a Q-linear
transformation A on G: Define a ring anti-homomorphism

B=py :R9M (Q) by p(d)=[mat(d)y]', where [mat(d)y]' denotes the
transpose of the matrix of the induced map A with respect to the basis X.

(We are using the transpose instead of the matrix itself simply for notational
convenience in what follows.) In the following lemma, we record three relevant
properties related to the mapping pu.

Lemma 3.1. With notation as above
(a) Let A =(3Lp) £ l'lRp. Then A €R if and only if:
§ There existsa nx n rational matrix & such that, for almost all p
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lp(xlp) - xlp .
lp(xnp) x

Moreover, if condition (§) is satisified, then the rational matrix o will be
precisely p(A).

(b) We have ker 4 = Hom(G,T) and im g is a Q-subalgebra of M n(Q).
(c) If X' is another maximal independent subset of G and p' = ,u'x. is the
map from R into Mn(Q) defined for X' as p is for X, thenim g’ and
im p are conjugate Q-subalgebras of M n(Q).

Proof. (a) Suppose A=(X )&eR. For geG let g =g+ T. Since
(%) is the transpose of the matrix of A with respect to X we have the
rational matrix equation :
l(xl

1

= p(d)
Mxn) X,

This equation, viewed componentwise, gives (§) for p greater than or equal to
some suitably large k. In particular k will be chosen large enough so that
H(A) can be interpreted as an nxn matrix over Z/pZ. Conversely, if
A=(A)ellR_ satisfies (§) then it is not hard to check that A(X) c G.
Hence, by Lemma 3.0, A €R =E(G). Note that in this case o = p(A).
(b) By definition of p we have p(A) =0 if and only if A is the zero map.
The latter condition is equivalent to the requirement A(G) c T. Thus,
ker i = Hom(G,T) and our first claim is proved. To prove the second claim,
since p is a ring anti-homomorphism, we only need show that im u isa
Q-subspace of M n(Q- This is equivalent to showing that im p is divisible.
Since T(R), the torsion subgroup of R, is contained in Hom(G,T) and
R/T(R) is divisible, it follows that R/Hom(G,T) is also divisible. Thus, im g,
which is anti-isomorphic to R/Hom(G,T), is divisible.
(c) If X' is another maximal independent subset of G then
X = (xi+T, - xr')+'l‘) is another Q-basis for G/T. Let B be the invertible nxn
rational matrix defined by the matrix equation X'= 3X. For A € R we have

@A) =B ud) B'l. Hence conjugation by B produces an isomorphism from
impy to im '
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For a maximal independent set X c G let Xp be the Z/pZ-subspace of
G_ spanned by {xl pr o xnp}. The set X is called strongly spanning if
Xp = Gp for almost all primes p. The set X is called strongly independent if
[xlp’ . xnp} is an independent subset of the Z/pZ-vector space G p for
almost all primes p.

We remind the reader that all primes referred to are always supposed to
be in the set SG.

Lemma 3.2. For maximal independent sets X,X' of G there exists
k >0 such that p 2k implies X =XI'). Thus X is strongly independent
(respectively strongly spanning) if and only if X' is.

Proof. Let BeMn(Q) be the coordinate change matrix from X to X',
as in the proof of Lemma 3.1 (c). If k is chosen large enough so that p 2 k
implies that B can be interpreted as a matrix in M n(Z/pZ) and also such that
det B#0 in Z/pZ, then p 2k implies X p> X p"

The next two Propositions relate the strong independence and spanning
properties of a maximal independent set X to the associated map By

Proposition 3.3. Let X be a maximal independent set of G and let
R % Then X is strongly independent if and only if; (1) u is onto and (2)
there exists k >0 such that p 2k implies X p #0.

Proof. Suppose X is strongly independent. Choose k such that p 2k
implies that {xl s oo X ) is independent. Plainly, for p 2k, Xp #0. Let
ae Mn(Q). Choose k' 2k such for p2k' the matrix o can be interpreted as
a matrix in Mn(Z/pZ). For p2k' the subspace Xp is free on {xlp, e xnp].
Therefore the matrix ¢ induces an endomorphism on X_, This endomorphism
can be extended to an endomorphism A of G_ by sending a complementing
summand of Xp in G tozero. For p<k' let 4  be an arbitrary
endomorphism of G o Then, by Lemma 3.1 (a), 4= (lp) is an
endormorphism of G. By definition of the map i, u(d) = .

Conversely, suppose u is onto and there exists kg with X p #0 for
P2 k0' For 1<ij<n let Eij be the rational matrix with 1 in the (ij)
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position and O's elsewhere. Choose A'ij €R with u(Aij) = Ei' and choose
positive integers kij = k(Aij) as in the proof of Lemma 3.1 (a). Take

k = max {kO. kij | 1<ij<n} and suppose p is a fixed prime with p > k.
By assumption there exists at least one j such that x. # 0. Now suppose
by C Xep = 0 for some scalars {cl, e cn} in Z/pZ. Forany 1<i<n,
applying Lemma 3.1 (a), 0= Aij(Z < xtp) ol COPL | Eij [xtp] =¢; Xy
[xtp] is the nx1 column matrix consisting of the ordered set {x1 pr e X, p}

Here

and [cl, vy cn] is the 1xn row matrix consisting of the ordered set
{cl, s cn}. Since xjp¢0 it follows that g =0. Thus p2k implies

{x xnp’ is independent.

1p
Proposition 3.4. Let G be a group with maximal independent set X

and pu= Ky Then the following are equivalent:

(1) X is strongly spanning

(2) keru= eRp

(3) Forsome k, Rn [npakR p] is countable.

Proof. (1) =+ (2) Let A= (lp) eker g, Then, for all p 2k(4), A’p
induces the zero endomorphism on X_. But for some k 2 k(1) and all p 2k,

Xp = Gp' Thus, for all p2k, )‘p =0 or, equivalently, 1 £ eR

p

(2) -+ (3) Foreach p write Gp = Xp ® Yp. Then TIE(Y p) can naturally be

regarded as a subring of R and viewed in this way ITE(Y_) < ker gt. Since

keru= eRp it follows that there exists k such that Yp =0 for p2k. Thus,

for p2k, R P = E(Gp) = E(Xp) is finite. Let u * be the restriction of u to
*

the ideal R Y Rn [I'IkaRp]. Then kery = ekaRp is countable.

Moreover impu =imucM n(Q) is also countable. Hence R * is countable,
as desired.

(3)- (1) Asin the proof of (2)+(3) we have T1E(Y )CR ¥, Since R"
is a countable ring, for some k'2k and all p2k', Yp must be zero. Thus
p 2 k' implies that Gp = Xp. Hence X is strongly spanning and the proof is
complete.

Let A=imageux for X a maximal independent subset of G. By
Lemma 3.2 (c) this subalgebra of Mn(Q) is an isomorphism invariant of G.
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For the rest of this section we consider the pp and von Neumann regular
properties of R in terms of the pp and von Neumann regular properties of A.

Theorem 3.5. Let G be a mixed group of finite torsion-free rank with
®G_ <G <IIG_ and suppose that X is strongly spanning for some maximal
independent set X c G. Then:

(a) R is von Neumann regular if and only if A is von Neumann
regular.

(b) If R is pp then A is left pp.

Proof. (a) Clearly if R is von Neumann regular then A is. For any
ring R and ideal K, ifboth K and R/K satisfy the defining condition for
von Neumann regularity, then so does R. Suppose X is strongly spanning.
Then, by Proposition 3.4, ker piy = eRp. Since each R_ = E(Gp) is
von Neumann regular, so is ker My Hence if A =R/ker By is von Neumann
regular then R is von Neumann regular.

(b) Let rB(b) [respectively lB(b)] denote the right [respectively left)
annihilator of an element b in aring B. Assume that R is pp and let

#(A) € A. By definition rR(A) =eR for some idempotent ¢ € R. We claim
that u(e) is an idempotent generator for 1 A(u()»)). Plainly u(e) is an
idempotent with p(e) p(A) = 0. Suppose u(6) € A with u(8) u(A) =0. Then
Adekeru= eRp. Thus (7L5)p =0 for all but finitely many p. Define SeR
by 3p=5p if (A9),=0 and 3p=0 otherwise. Then (3 - &) eeR = ker 4,
) u(% = u(8). Since 3erR(3.), e% = 3 Thus,

1(8) = u(®) = p(ed) = ud) pte) = 1d) p(e), which completes the proof of the
claim.

Corollary 3.6. Let G be a mixed group of finite torsion-free rank with
er <G <IIG . If X is strongly spanning and strongly independent then
R = E(G) is von Neumann regular.

Proof. If X is strongly independent then, by Proposition 3.3,
image By = Mn(Q), which is 2 Von Neuman regular ring. Hence, by Theorem
3.5, R is von Neumann regular.
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We need one more lemma before we can give our main result. For each
plet G p= Xp ® Yp be a fixed direct sum decomposition. Denote G n IIX p
by GX andlet Y = er.

Lemma 3.7. With notation as above

(@) G= GX oY and

(b) R is pp if and only if E(GX) is pp.

Proof. Part (a) is a straightforward exercise. The "only if" part of (b)
follows since E(Gx) = uRu where u is a projection of G onto Gx.
Conversely, suppose E(Gx) is pp. Let A eR =E(G). To show that R is pp
it is enough to show that rR(l) is generated by an idempotent. To verify this
latter condition it suffices to construct an element e €R such that, for each p,
e_ is an idempotent projection e_:G_-ker A . Then e will be a projection
of G onto ker A and, by Theorem 2.1 (2), it follows that rR(l) = eR.

Since A € E(G) the induced map A € E(G) is represented by the matrix
;,Lx(l). By Lemma 3.1 (a) that there existsa k>0 such that, forall 1<i<n
andall p2k, 4 (xi ) is a fixed rational combination of [xl p = Xp }. Let
{xl', wa X n'} be a new maximal independent set, where each xi' is defined by
xip’ =0 for p<k and X p' = Xip for p 2 k. Note that if Xp' is the subspace

of Gp generated by {xl s ey xnp'] and GX' =GNnIIX ' then

® b <kX p ® GX' =Gn HXp = GX' Thus, since E(GX) is pp, so is E(GX.).
Furthermore, by the construction of X', lp(X'p) cX p' for all primes p. Thus
A(GX.) c GX"

By abuse of notation, rename X' by X and write G = GX oY asin
part (a). With ournew X themap A¢e Hom(Gx ® Y,GX oY) is represented
by a 2x2 matrix ['11 f |1 where ll £ E(GX), 12 eE(Y) and f € Hom(Y,G

0
Note that, since Y is torsion, Hom(Y,Gx) = Hom(Y. ,T(Gx)) = Hom(Y,eXp).

We will construct our desired idempotent ¢ in similar matrix form

e= [°1 g ] By assumption E(Gy) is pp. Thus, there exists ¢, € E(Gy)
0 )
such that clE(GX) = rE(Gx)al)‘ For each p let

x)-

U, =ker A, 0 fp'l(im Ay asubspace of Y . Write Y =U oV, where
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Vp is any complementing subspace. Define X E(Y) = E(eYB
componentwise by taking ©p to be projection of Y_ onto U_ with kernel
Vp. Define g € Hom(Y. ,Gx) = Hom(eY p,eaX p) componentwise by gp(Vp) =0
and,for u_eU_, g (u)=(1-e, )x ), where x_ eX  satisfies
PP Cpp 1p™7p PP '
fp(up) =- A’l (xp). Each map is well defined since, if f p(u p) =- Zl p(x p ),
then (xp - xp') ekerll , hence (1- elp) (xp - xp') =0.
Let e= e8| Then e £ E(G) and simple matrix computations
0 )
show that e2 =e¢ and that Ae = 0. It remains to show that, for each fixed
prime p, =[c1p& is a projection of Gp onto ker lp and not onto
0 ey

some proper subspace of ker A_. Let a_ & ker A.p for some fixed p. To
complete the proof we will show that e_a_=a . Write

= . = = +f . It
=X, @Y, € Xp oY lThen 0 lp(ap)n [,lg(xp) p(yp)] ® sz(yp)
follows that lzp(yp) =[ 1 P(XP) + fp(yp)] =0. Hence
Yp € ker A2p nf p'l(im }‘l p) = Upk B)y definition

= + =

eplap) =lep(xp) + g (ypl e ey (v,

[clp(xp) +(1- elp)(xp)] ey =X_& yp =a

p=%p b The proof is now complete.

Theorem 3.8. Let er <G< l'le. Suppose that G is of finite
torsion-free rank with-each G_ elementary and let A = image Ky Wwhere
X c G is any maximal independent set. Then:

(a) If A is von Neumann regular then R is pp.

(b) If R is pp (respectively von Neumann regular) then A is left pp
(respectively von Neumann regular).

Proof. (a) Suppose that A is von Neumann regular. Write
G= GX @Y asinLemma 3.7 (a). By Lemma 3.7 (b), to show that R is pp it
is enough to show that R' = E(Gx) is pp. By the definition of Gx, Xc GX
is a maximal independent set which is strongly spanning. Let p' be the
restriction of the map by 10 the subring R'c R. The map y' coincides with
the map from R' to Mn(Q) defined with respectto X c Gx as in the
paragraph preceding Lemma 3.1. Moreover im ' =im g = A is
von Neumann regular, so, by Theorem 3.5 (a), the ring R' is von Neumann
regular. Hence R’ is pp and the proof is complete.
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(b) Let ' be as in part (a) and suppose that R is pp. By Lemma 3.7
(b) and the fact that A =im p', we may assume that X is strongly spanning.
Therefore we can apply Theorem 3.5 (b) to conclude that A is left pp. The
second statement of part (b) is clear.

Corollary 3.9. Let er <G« HGp be as in Theorem 3.8. Suppose
that X is strongly independent for some maximal independent set X c G.
Then R is pp.

Proof. By Proposition 3.3, if X is strongly independent then Hx is
onto. Hence A = Mn(Q) for n = torsion-free rank G. Theorem 3.8 (a) now
applies to show that R is pp.

Corollary 3.10. Let er <G< l'IGp with each G b elementary and
with torsion-free rank G = 1. Then R =E(G) is pp.

Proof. In this case A =Q is von Neumann regular, so, by
Theorem 3.8, R is pp.

We will now construct an example to show that even if A is both left
and right pp R need not be pp. Thus Theorem 3.8 (a) cannot be strengthened.
The example also shows that a reduced S-local group of torsion-free rank two
need not have a pp endomorphism ring (see Corollary 3.10).

Example 3.11. Partition the set of all primes into two disjoint infinite

subsets P and P2 For each prime p define an elementary p-group G by
p = Z(p)xlp ® Z(p)x2p for pe P Gp = Z(p)x 1p for pe P2 Let
Xy = (x1 ) and Xy = (x ) whcre xzp =0 for p £P2 Take G to be the
(umquc) pure subgroup of I'IG generated by er and {xl,x2] Then for
A e E(G) there must exist a posmve integer k and a 2x2 rational matrix o
such that p 2 k implies l(xlp) —a lp . Since x2p =0 forall pe P,
szp) x2p

it follows that o must upper triangular. Conversely, one can check that for
any upper triangular matrix [ there exists A € E(G) with matrix p(A) = S.
Thus, A is the subalgebra of M,(Q) consisting of the upper triangular
matrices. Note that A is left and right pp.
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To see that R itself is not pp consider the map A = (le), where
lp € E(GP) is given by : }»p(x1 )= Xop A (x9) = 0,for pe P, and A =0
for pe PZ‘ Then A(x l) =X and A(xz) =0, so, by Lemma 3.0, A € E(G).
Suppose rR(/'L) =¢eR for some idempotent ¢ = (ep) €R. Forall pe P2, since
A_ =0, we must have e_= 1. Moreover, since e €R, there exists a positive
integer k and fixed rationals q;, q, such that, for p 2k,
ep(xlp) =q; xlp +q, xzp. Thus, for p2k with peP,,
X1p = ep(xlp) =q xlp +qy 0. Since the set P, is infinite it follows that
q; = 1. But then, for p2k and p Py,
A pe p(xlp) = }»p(xl p +q, xzp) =Xy o # 0, a contradiction.

We end this section with an example to show that the conclusion of
Corollary 3.10 cannot be strengthened from pp to von Neumann regular.

Example 3.12. For each prime p let G P = Z(p)xp ® Z(p)yp. Define G
to be the pure subgroup of IIG_ generated by er and x = (x P)' Since the
torsion-free rank of G is one, A =Q. Thus A is a von Neumann regular ring.
The map A =(A_) belongs to R =E(G) if and only if there exists k >0 and
o« €Q with A (xp) =ax forall p2k. Thus, R consistsof all A = (Ap)
such that for p2k(A) the map A_eEnd (Z(p)x_ @ Z(p)y ) is represented by

a matrix [aﬁp for ¢ €Q and ap,bpeZ/pZ Let &R be such that each
0

Gp has matrix representation [0 1]. A matrix computation shows that

0
oA o# 0 forany A €R and, therefore, that R is not von Neumann regular.
(Compare this example with Theorem 4.1.)

4. The Commutative Case.

Let QGPES <G« HGpeS with each Gp elementary. As before, to
avoid trivialities, we assume S to be infinite. In this section we examine the
case where E(G) is a commutative ring. From the general description of E(G)
we conclude that this occurs precisely when, for every pe S, rank G_ = 1.
Thus, we are looking at pure subgroups G of I'Ip eSZ(p) containing Op eSZ(p)'
If the torsion-free rank of G is finite we obtain the following result.



1174 GLAZ AND WICKLESS

Theorem 4.1. Let G be a pure subgroup of Il p esZ(p) containing
eaZ(p)p S with torsion-free rank G = n <«. Then R =E(G) is a von Neumann

regular ring.

Proof. Let X be a maximal independent set and, as in Lemma 3.7,
write G = Gx @Y. Since each Gp =Z(p) the group Y is simply the direct
sum of the G 's over theset S'=(peS | X =0) and
GX =GnIl P eS\S'Gp' Both of these summands are fully invariant and, hence,
there is a ring direct sum decomposition R =R'@ R" where R'= E(GX) and
R" = E(Y). Since R"= HpeS.Z/pZ is von Neumann regular, to show that R
is von Neumann regular we need only show that R’ is von Neumann regular.
Moreover X c GX is strongly spanning so, by Theorem 3.5 (a), to show that
R' is von Neumann regular it is enough to show that A = image By is
von Neumann regular. But A is a commutative subring of M n(Q)' and
therefore of Krull dimension zero. Further X ¢ GX is strongly spanning so
ker By = @R’ . Hence A isisomorphic to R/eR’'_ which is a ring with no
nilpotent elements. Thus A is a commutative ring with no nilpotent elements
for which every prime ideal is minimal, and therefore is von Neumann regular
[Gl.

If the torsion-free rank of G is not finite the conclusion of Theorem 4.1
does not necessarily hold: If ©Z(p) < G < I1Z(p) then R =E(G) need not be
pp and, even if pp, need not be von Neumann regular. Before providing
examples, we need a short discussion.

Letr= (rp) € l'IpeSZ/pZ. Define spt(r) = {p €S | o #0) and
csp(r) = S\ spt(r). Call such an element r finite if spt(r) is a finite set and
cofinite if spt(r) is cofinite in S. A subring Rc l'[p ESZ/pZ is called
finite-cofinite if every element r €R is either finite or cofinite.

Lemma 4.2. Let R be a subring of HP§Z/pZ. If R is finite-cofinite
then R is a pp ring.

Proof. For an element x € R we have that rR(x) =Rn I'Ip ecsp(x)Z/pZ' Since
R is finite-cofinite, and since finite direct sums of R_'s are R-summands of
R, it follows that, for all x R, rR(x) is idempotent generated.
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Example 4.3. We will construct aring R containing ©Z/pZ (taken
over the set of all primes) and contained as a pure subring in I1Z/pZ, with the
property that R is finite-cofinite and R/(eZ/pZ) = Q[x), the polynomial ring
in one variable x over Q. By Lemma 4.2, R will be a ppring. But R
cannot be von Neumann regular since it has a ring homomorphic image which
is not von Neumann regular. Furthermore, since R is a pure subring of
MZ/pZ, R =E(G), where G is the additive group (R+) [R-1]. Such aring
will provide an example of an endomorphism ring R = E(G) for a group G
with eZ(p) < G <I1Z(p) such that R is pp but not von Neumann regular.

The construction: List all the non-constant polynomials in Z[t],

{f, = £;()_; andlet {p;) be the st of primes enumerated in their natural
order. Pick an integer k(1) such that for every i 2 k(1), Z/piZ contains a
nonzero element which is not a root of fl. Let ck(l) € Z/pk(l)Z be such an
element. Now pick k(2) 2 k(1) such that i 2 k(2) implies that each Z/piZ
contains a nonzero element which is not a root of f1 -fz. Let
0= ck(?.) € Z/pk(z)Z with °k(2) not a root of fl ‘fz. Now choose, for
k(1) <i <k(2), anelement c; € Z/piZ to be an arbitrary nonzero non-root of
f,. For k(3) 2k(2) let 0= @) € Z/pk(3)Z be a non-root of fl ~f2-f3 and
let, for k(2) <i<k(3), 0= G € Z/piZ be non-roots of f1 -f2 . Continue this
way to construct an element ¢ = (ci) € HZ/piZ satisfying that if fe Z[t] isa
non-constant polynomial there is an integer k = k(f) such that for i 2k
f(ci) #0. Denote T = epZ/pZ. Then (I'IpZ/pZ)/I‘ is a Q-algebra containing
the element x =c¢ + T which is transcendental over Q.

Let Ro T be the pure subring of I1Z/pZ such that
R/T = Q[x] ¢ (IIZ/pZ)/T. It is not hard to check that R is finite-cofinite and,
thus, satisfies all of our requirements.

A similar construction provides a ring R = E(G) < [1Z/pZ which is not
PP-

Example 4.4. Partition the set of all primes into two infinite disjoint sets
P, and P2. Using the method of Example 4.3 we can construct an element
c= (cp) € [1Z/pZ such that x =c + T is transcendental over Q, and
spt(c) = Pl' If RoT is the subring of IIZ/pZ such that R/T = Q[x] then R
is pure in I1Z/pZ and E(R+)=R. If ee R is an idempotent then e + T is
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an idempotent in Q[x] and thus e + T is either O or 1. Therefore the

element e is either finite or cofinite. It follows that r,(c)=R NIl Z/pZ
R p.‘.‘P2

cannot be generated by an idempotent.

[A]

(F-R]

(G]

(H-P]

[Kh]

[Kr)

(L]

(P]

(R-1]

(R-2]
(R-3]
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