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Let R be a commutative ring with identity, let G be a
multiplicative abelian group and denote by RG the group ring of G
over R. The properties of RG as reflected by both R and G are of
considerable interest.

In (4), Connell proved that RG is a Noetherian ring if and
only if R 1is a Noetherian ring and G is a finitely generated
group. Motivated by this result we ask when is RG a coherent
ring. Theorem 1 provides an answer to this question.

We next turn our attention to the weak dimension of RG when
RG is a coherent ring. A characterization of group rings of weak
dimension zero, that is, absolutely flat (or Von Neumann regular)

rings, has been known for quite some time and proved independently
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1842 GLAZ

by Auslander (1), McLaughlin (11) and Villamayor (16). These
rings are automatically coherent.

In Proposition 1, we generalize a result of Auslander to
abelian groups of arbitrary finite rank with coherent group rings.
This generalization allows us to completely characterize coherent
group rings of finite weak dimension. This is done in Theorem 3.
As corollaries we obtain yet another proof of the characterization
of absolutely flat group rings, a complete characterization of
semihereditary group rings and, comparing Corollary 3 with the
result in that direction proved by Gilmer and Parker (5), we
conclude that for rings of the form R[x,x_I], the semihereditary
condition, and the Prufer ring condition coincide.

We then investigate to what extent the conditions involved in
the characterization of coherent group rings of finite weak
dimension characterize coherent regular group rings. This is done

in Theorem 4 and Remark 1.

We first determine when is a group ring coherent. To this

end we start by proving the following lemma.

LEMMA 1. Let R be a commutative ring and let X;,Xs, . . .,%X_

be indeterminates over R. Then:

(1) R[x; + X7l 000, + x21] =R[%y, . . o,x].

(2) R[x,iggl,. . .,quz;ll is a finitely generated and free

R{x, + x;l,. o eaX_ + x:l] module.
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Proof: We prove both statements by induction on the number of

variables, n.

(1) For n =1 set x = x; and let

(2)

ak(x + x_l)k + .. .+ al(x + x-l) + ag = 0 with ay €R for
0 <1< k. Multiply this equality by x* to obtain:
ak(x2 + l)k + .. .+ al(x2 + l)xk—1 + aoxk = 0. This
equality holds if and only if a = . . . = a; = a5 = 0;
therefore, R[x + x‘I] = R{x].

By the induction hypothesis we have that
R(x; + xIl, R x;I] = R(Xp, o o o X%, + x;1].
By the case for n = 1 this last ring is isomorphic to
R{xy, « . ., x;] and the claim is complete.
For n = 1 set x = x;. We have %21 - (x + xxl +1 =0 for
i = 1 or -1; therefore, R[x,x_I] = R[x + x'l, x] is generated
by 1 and x as an R[x + x'l] module. Consider the
R[x + x"l]—homomorphism p:R[x + x']'] ® R[x + x"l] — R[x,x-ll
defined by p((f,g)) = £ + gx for f,g ¢ R[x + x1]. p is onto
and our claim for n = 1 will be complete if we show that
ker p = 0. Let (f,g) € ker p. Write
£f=ay+ aj(x+ shy+ ...+ a (x + x 1% and
g = by + by(x+ hy+ ...+ by (x + x 1K with aj,by € R,
0 <1, j< k. Then f + gx = O implies that fx* + gx*'l =0
and we obtain the following equality:

aoxk + al(x2 + 1)xk'1 + ...+ ak(x2 + 1)k =

~(bptL 4 b (2 + 1)xK + L L L+ 2+ D).
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Comparing coefficients of powers of x on both sides we
obtain:
by =0, 8 =0, b_y=0,a_,=0,..., by = 0, ag = 0,
and conclude that (£f,g) = 0.

By the case for n = 1 we have that
R[x,, xIl, « e ey Xp, xgl] is a finitely generated free
R[x; + xIl][xz, xIl, o v oes Xp, x;1] module. By the
induction hypothesis this last ring is a finitely generated
free R[x) + xIl, «oeoey X x;ll module. It follows that
R[xl,xII, o e ey xn,x;l] is a finitely generated and free
R[x; + xIl, T x;1] module and the proof is

complete.

Recall that a ring R is called a coherent ring if every

finitely generated ideal of R is finitely presented. A ring R is

called a stably coherent ring if R is a coherent ring and if for

every positive integer n the polynomial ring in n variables over R

is a coherent ring.

THEOREM 1. Let R be a commutative ring and let G be an

abelian group, then:

(1) If G is a torsion group, then RG is a coherent ring if and

only if R is a coherent ring.

(2) 1f 0 < rank G = n < @, then RG is a coherent ring if and only

if the polynomial ring in n variables over R is a coherent

ring.
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3)

If rank G = », then RG is a coherent ring if and only if R is

a stably coherent ring.

Proof: Necessary conditions for the coherence of RG:

Assume that RG is a coherent ring. If H is a subgroup of G,

then RG is a free, hence faithfully flat, RH module (9, Chapter 2,

2.15). It follows from (7, Corollary 2.1) that RH is a coherent

ring.

(1

(2)

(3)

For H = {1} the above remark implies that R is a coherent
ring.

If 0 < rank G = n < », let H be a free subgroup of G of rank
n, then RH 15 a coherent ring and

RH = R[X),x]%, . + . , X;, X;'] (9, Chapter 2, 2.6). By
Lemma 1 RH is a finitely generated free, hence a finitely
presented, module over a polynomial ring in n variables over
R. Thus, the polynomial ring in n variables over R is a
coherent ring (7, Corollary 2.1) or (l4, Proposition 1l.l).
If rank G = © then for every positive integer n, G contains a
free subgroup of rank n. By the above argument the
polynomial ring in n variables over R is a coherent ring;
therefore, R is a stably coherent ring.

Sufficient conditions for the coherence of RG:

Write G = lim G, where {G,} is the set of all finitely
—

generated subgroups of G ordered by inclusion. If Ga‘: GB then

RG8 is a free RG_ module and RG = lim RG_. Therefore, to obtain
a .«
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that RG is a coherent ring, it suffices to show that RG, is

coherent for every a(3, Chapter 1, exercise 12(e), §2).

(1) 1f G is a torsion group, for each o, G, is a finite group and
so RG, is a finitely generated free module over the coherent
ring R. It follows that RGa is a coherent ring (7, Corollary
1.2) for every a, and, thus, RG is a coherent ring.

(2) 1f 0 < rank G = n { = then rank G, { n for every a: Since
R[xl, o . ey xn] is a coherent ring we have that
R[x;, « « «, X;] is a coherent ring for every 1l £1i<n.

Write Gy, = G} x F,, where G is the torsion subgroup of G,

and F, is free of rank equal to i = rank G,. Then

RGy = (RF4)GY (9, Chapter 2, 2.16). Since G& is a torsion

group, it follows from the previous case that to obtain that

RG, is a coherent ring, it suffices to show that RFQ is a

coherent ring. Now RF, = R[x,, xIl, o v oes Xy, le] and

is, therefore, a finitely generated free module over a

polynomial ring in i variables over R. Since this polynomial

ring is a coherent ring so is RF, and the claim is complete.
(3) 1If rank G = @ we still have rank Gy € = for every a. The

stable coherence of R implies that RGyis a coherent ring for

every a, and RG is a coherent ring.

As a result of this theorem we obtain a large class of rings
R for which RG is a coherent ring for every abelian group G,

namely all stably coherent rings. To name a few: Noetherian
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rings, absolutely flat rings (18), semihereditary rings (18),

coherent rings of global dimension two (18), coherent rings of

finitely presented dimension two, as defined by Ng (13).

We next turn our attention to the weak dimension of a
coherent group ring. We will freely make use of several
properties of the group ring which we briefly describe here.

Let G be an abelian group and let H be a subgroup of G.
Since RG is a free RH module we have that for every RG module M,
w.dimRHM.S w.dimpaM (1). In fact, RG considered as an RH module
contains RH as a direct summand and, therefore,
w.dim RH € w.dim RG (1). We also have that if G = }32 Gy, where
{G4} is a set of subgroups of G ordered by inclusion, then, for
any RG module M, w.dimp.M = s:p {w.dimRGE} and
w.dim RG = sup {w.dim RGG} ).

The aug;entation map aug:RG — R is defined as follows. Let

x= L Xg8 € RG, where x_, ¢ R and all but finitely many xg are

geG
zero, then aug(x) = I x
geG

g
g Via this map, R becomes an RG module.
If r €e R and x = gEcxgg € RG then we define rx = r aug(x).
Whenever we refer to R as an RG module we shall mean that R is the
RG module with scalar multiplication defined above. Let

I(G) = ker (aug), then 0 — I(G) — RG — R —* 0 is an exact
sequence of RG modules and I(G) 1s the ideal of RG generated by

all elements of the form g — 1, where g runs over a generating set

for G. In general, if H is a subgroup of G, then RH is naturally
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included in RG. The extension of the ideal of RH, I(H) to RG,
denoted by I(H)RG, is generated, as an ideal of RG, by all
elements of the form h - 1, where h runs over a generating set for
H (9, Chapter 3, 1.3), and R(G/H) = RG/I(H)RG (9, Chapter 2,

2.10).

CHANGE OF RINGS THEOREM (8, Theorem 3, p. 172). Let A be a

ring, let x be a nonzero divisor in A and let M be an A/xA module,

then if proj.dimA/YAM = n { » ye have that proj.dimyM = n + 1.

Let G be an abelian group and let R be a commutative ring which is
uniquely divisible by the order of every element of G (of finite
order). This condition, which will be extensively used in this
paper, is equivalent to the following condition: If g € G with

order o(g) = p, where p is prime, then p is a unit in R.

PROPOSITION 1. Let G be an abelian group of finite rank and

let R be a commutative ring satisfying that RG is a coherent ring.

Then the following conditions are equivalent:

(1) w.dim,~R = rank G.

(2) w.dimpR .

(3) R is uniquely divisible by the order of every element of G.

Proof: We will prove all implications by induction on

n = rank G. The case n = 0 was proved by Auslander (1,
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Proposition 6); thus, we may assume that n > 1.

(1) - (2) Clear.

(2) = (3) If H is a subgroup of G then w.dimRHR S.W‘dimRGR £ =,
Pick H such that rank H < rank G and H contains the torsion
subgroup of G. Then the induction hypothesis implies that
(3) is satisfied.

(3) ™ (1) Assume first that G is a finitely generated group.
Write G = H x C, where C is infinite cyclic. H = G/C and
write C = <¢>. rank H=n - 1, RG is a free RH module; thus,
RH is a coherent ring (7, Corollary 2.1). Moreover, as G
(respectively H) is a finitely generated group, I(G)
(respectively I(H)) is a finitely generated ideal of RG
(respectively RH). It follows that R is a finitely presented
RG (respectively RH) module. By (12, Lemma 1.2) for L = G or
H we have w.dimp;R = proj.dimpyR. As H satisfies (3), by the
induction hypothesis we obtain w.dimpyR = rank H. Now
RH = R(G/C) = RG/I(C)RG = RG/(c = 1)RG, and (c ~ 1) is a
nonzero divisor on RG (9, Chapter 2, 2.18). By the change of
rings theorem w.dimp.R = rank H + 1 = rank G.

If G is not finitely generated write G = 1&2 Gy, where
{G,} is the set of all finitely generated subgroups of G
ordered by inclusion. Then rank G, < rank G for every o, and
there exists an ag such that rank Gu0 = rank G. We conclude

that w.dimpqR = sgp {w.dimkcg} = s:p {rank G, } = rank G.
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DIMENSION INEQUALITY THEOREM (1, Proposition 4). Let R be a

commutative ring and let G be an abelian group. Then:

w.dim R £ w.dim RG < w.dim R + w.dim,.R.

THEOREM 2. Let G be an abelian group and let R be a

commutative ring which is uniquely divisible by the order of every

element of G. If RG is a coherent ring, then

w.dim RG = w.dim R + rank G.

Proof: If w.dim R = ® then w.dim RG > w.dim R = @ and
equality holds. We may, therefore, assume that w.dim R € =,

Assume first that G is finitely generated. We will prove the
theorem in this case by induction on n = rank G. The case for
n = 0 was proved by Auslander (1, Theorem 7). The transition from
the n = 1 to the n step is done in the same set up as in
Proposition 1, (3) = (1). By the induction hypothesis we have
w.dim RH = w.dim R + rank H. By Proposition 1 we have that
w.dimRGR = rank G and, therefore, w.dim RG { w.dim R + rank G.

As RG (respectively RH) is a coherent ring, for L = G or H we
have that w.dim RL = sup {w.dimRLM / M is a finitely presented RL
module} (12, Proposition 1.1), and Ww.dimpiM = proj.dimp;M if M is
a finitely presented RL module (12, Lemma 1.2). Let M be a

finitely presented RH module with w.dimpyM = w.dim R + rank H.

then M is a finitely presented RG module and, by the change of
rings theorem, we have w.dimpeM = w.dim R + rank G. We conclude

that w.dim RG > w.dim R + rank G and equality holds.
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If G is not finitely generated and if rank G = «, then for
every positive integer n, G contains a free subgroup F, of
rank F, = n. As RF, 1s a coherent ring we have
w.dim RG > w.dim RF, = w.dim R + n for all n, and the equality of
the theorem holds.

We may, therefore, assume that rank G < ». Write G = ;32 Gy »
where {Ga} is the set of all finitely generated subgroups of G
ordered by inclusion. Rank Gy £ rank G for every a, and there
exists an ag such that rank Gm0 = rank G. Now
w.dim RG = sup {w.dim RG,} = sgp {w.dim R + rank Ga} =

w.dim R + rank G.

THEOREM 3. Let R be a commutative ring and let G be an

abelian group satisfying that RG is a coherent ring. Then

w.dim RG < ® if and only if there exists a nonnegative integer n

such that R, G and n satisfy: w.dimR < n, rank G = n - w.dim R

and R is uniquely divisible by the order of every element of G.

If such an integer n exists then w.dim RG = n.

Proof: If such an integer n exists then Theorem 2 yields
w.dim RG = n < ®. Conversely, assume that w.dim RG < ®. Write
w.dim RG = n. Then w.dim R { w.dim RG = n. Let g € G with order
o(g) = p, where p is prime, then g is contained in a finitely
generated subgroup H of G. As w.dimpyR S_W.dimRGR £ n by
Proposition 1, p is a unit in R, and R is uniquely divisible by
the order of every element of G. It now follows from Theorem 2

that rank G = n - w.dim R.
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As absolutely flat rings are stably coherent rings we obtain:

COROLLARY 1. Let R be a commutative ring and let G be an

abelian group, then RG is an absolutely flat ring if and only if R

is an absolutely flat ring which is uniquely divisible by the

order of every element of G, and G is a torsion group.

Recall that a ring R is called a_semihereditary ring if every

finitely generated ideal of R is projective. A ring R is a
semihereditary ring if and only if R is a coherent ring with
w.dim R < 1 (12, Proposition 2.2). As semihereditary rings are
stably coherent rings, combining Theorem 2 and Theorem 3 we

obtain:

COROLLARY 2. Let R be a commutative ring and let G be an

abelian group, then RG is a semihereditary ring if and only if

exactly one of the following conditions holds:

(1) R is an absolutely flat ring which is uniquely divisible by

the order of every element of G and rank G £ 1.

(2) R is a semihereditary (not absolutely flat) ring which is

uniquely divisible by the order of every element of G and G

is a torsion group.

As a corollary of Corollary 2, we also obtain:
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COROLLARY 3. Let R be a commutative ring and let x be an

indeterminate over R. Then R[x,x‘ll is a semihereditary ring if

and only if R is an absolutely flat ring.

Proof: Note that R[x,x-ll = RG, where G is an infinite

cyciic group (9, Chapter 2, 2.6).

In (5), Gilmer and Parker defined a Prifer ring to be a ring
where every finitely generated regular ideal is invertible. As
invertible ideals are projective, this condition on a ring is a
restricted form of semihereditarity. In view of Corollary 3 and
Proposition 2.5 of (5), we see that for a ring of the form
R[x,x 1], the semihereditary condition and the Prufer ring

condition coincide.

A condition closely related to the finiteness of the weak
dimension is that of regularity. A ring R is called a regular
ring if every finitely generated ideal of R has finite projective
dimension. This notion, which has been extensively studied for
Noetherian rings, was extended to coherent rings with a
considerable degree of success (2), (15), (17).

If R is a coherent regular ring and M is a finitely presented
R module, one can prove by induction on the number of generators

of M, that proj.dimpM < o (15).
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It is clear that a coherent ring of finite weak dimension is
a regular ring. The converse is not necessarily true. For
example, the ring R = k[xl, Xy « « ], where k is a field and
Xys X9, o« + - are indeterminates over k, is a coherent regular
ring of infinite weak dimension. To see this, note that
R = {EE k [%), X9, + « «, %3], w.dim k{x), . . ., x;] = n; thus,
k(X « « oy x,] 1s a Noetherian regular ring for all n. R is a
coherent regular ring by (10, Proposition 1.36). As R is a
faithfully flat k[xl, o« o ey xn] module for every n, we have that

w.dim R > n for every n (10, Proposition 1.34).

LEMMA 2. Let R< S be commutative rings such that S is a

faithfully flat R module. If S is a coherent regular ring, then

so is R.

Proof: As S is a faithfully flat R module, we have that R is
a coherent ring (7, Corollary 2.1). Let I be a finitely generated
ideal of R, then I is a finitely presented R module and so I@DR S
is a finitely presented S module. Let proj.dimgI®p S = n <=.
We conclude that if N is any R module, then
Ext§(I@g S, N®g S) = 0 for k > n. By (10, Lemma 1.32)
0 =AExt§(I@§R S, N®g S) = Exti(I,N)C)R S for every k > 0.
Since S is a faithfully flat R module we have that Ext%(I,N) =0
for k > n. We conclude that proj.dimpI < n, and, therefore, R is

a coherent regular ring.
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We explore to what extent the conditions involved in the
characterization of coherent group rings of finite weak dimension
characterize coherent regular group rings. We make the following

conjecture:

Let R be a commutative ring and let G be an abelian group

such that the group ring RG is a coherent ring. Then RG is a

regular ring if and only if R is a coherent regular ring which is

uniquely divisible by the order of every element of G.

The next theorem shows that the conditions of the conjecture
are necessary, and provides two cases in which the conditions are

sufficient as well.

THEOREM 4. Let R be a commutative ring and let G be an

abelian group such that the group ring RG is a coherent ring. If

RG is a regular ring then R is a coherent regular ring which is

uniquely divisible by the order of every element of G.

Conversely, if R is a coherent regular ring which is uniquely

divisble by the order of every element of G, and, in additionm,

either G is a torsion group or w.dim R <=, then RG is a regular

ring.

Proof: Assume that RG is a regular ring; then by Lemma 2, R

is a coherent regular ring. Let ge G with o(g) = p, where p is
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prime; then ge H, where H is a finitely generated subgroup of G.
By Lemma 2, RH is a coherent regular ring as well. Since H is
finitely generated, R is a finitely presented RH module and, thus,
w.dimppR = proj.dimppR =, By Proposition 1, this implies that p
is a unit in R, and, thus, R is uniquely divisible by the order of

every element of G.

Conversely, write G = ;if Gy, where {Ga} is the set of all
finitely generated subgroups of G ordered by inclusion. Then
RG = ;EE RG,, and, by (10, Proposition 1.36), to show that RG is a
regular ring, it suffices to show that for each o, RG, is a
regular ring. Since RG is a coherent ring, so is RG, for every a.
We may, therefore, assume that G is a finitely generated group.

If G is a torsion group, then G is a finite group and the
order of G, o(G) is a unit in R. Let I be a finitely generated
ideal of RG, then I is a finitely presented RG module. Since RG
is a finitely generated free R module, we have that I is a
finitely presented R module. Let n = proj.dimpI < e and let
0— Xy Fpop > 0 0 o Fo — I — 0 be an exact sequence of
RG modules with F; free RG modules. Since Fy are free as R
modules as well, we have that X, is a projective R module. But
then, by (9, Chapter 3, 1.4), X, is a projective RG module and
proj.dimRGI £ n. We conclude that RG is a regular ring.

If w.dim R { », by Theorem 2 we have w.dim RG < =; therefore,

RG is a regular ring.



COHERENT GROUP RINGS 1857

REMARK 1. While this paper was in the reviewing process the
author had solved the above conjecture affirmatively. Its proof,
given in (6, Theorem 2.7), is based on the following result proved

by us in (6, Proposition 2.5).

RESULT. Let R be a coherent regular ring and let I be an

ideal of the polynomial ring in one variable over R, R[x},

admitting an exact sequence . . » = F) — Fy — 1 — 0, with F,

finitely generated and free R[x] modules. Then proj.dign[x11 £ @,

The author wishes to thank the Editor, Prof. W. Heinzer, and
the referee whose comments improved the presentation of this

paper.
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