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1. INTRODUCTION

Ž .Let R be a commutative ring and let f t be a polynomial with
coefficients in R,

f s f t s a t d q ??? q a .Ž . d 0

Ž .The content ideal of f t , or simply the content of f , is the ideal
Ž . Ž . Ž .a , . . . , a R. We denote it by c f . One of its properties is that c ? isd 0
semi-multiplicative, that is

c f ? g ; c f ? c g .Ž . Ž . Ž .

We examine the case in which for a fixed f this relation is an equality for
all polynomials g ; f is then said to be a multiplicatï e or a Gaussian
polynomial. From what one can tell this property may not be independent

Ž .of the generators of c f ; it may even depend on the sequence of its
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coefficients. Also, it may not behave well under change of rings more
general than epimorphisms. On the other hand the set of these polynomi-
als is a monoid.

Ž .Examples of Gaussian polynomials are those with a content c f which
Ž .is a principal ideal at each localization, or, if R, m is a local Artinian ring

2 w xwith m s 0 then any polynomial of R t is Gaussian.

Our guiding question is the following broad converse of the classical
lemma of Gauss.

Ž . w xConjecture 1.1. Let R be an integral domain. If f t g R t is a
Ž .Gaussian polynomial then c f is an invertible ideal.

Questions on the behavior of the content of polynomials have been
w xraised by several workers 1, 2, 4, 9 . One of the authors heard the question

above from Irving Kaplansky in the early 1960’s. It also appeared in the
w x Ž w x.thesis of H. T. Tsang 9 but not in her paper 10 .

In this note we settle this question in the affirmative for all Noetherian
Ž .normal domains Theorem 4.4 . Actually, if the ring has finite characteris-

Ž .tic, then being integrally closed will suffice Theorem 3.1 . Several other
special cases are dealt with as well.

2. HILBERT FUNCTIONS

Ž . Ž .We may assume throughout that R, m is a local ring, and f t is a
Ž .Gaussian polynomial. We use the notation n M for the minimum number

of generators of an R-module M.
The path to our analysis is a close examination of the numerical

function

n ¬ n c f n . 1Ž . Ž .Ž .

Ž .One gives a combinatorial setting for this function as follows. Set I s c f
and let

w x 2 2 w xR IT s R q IT q I T q ??? ; R T

Ž .be the Rees algebra of the ideal I. The function 1 is then the Hilbert
Ž . w xfunction of the special fiber F I of the ring R IT , that is of the graded

ring

w x n nF I s R IT m Rrm s I rm I ,Ž . [
nG0

where m is the maximal ideal of R.
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Ž .PROPOSITION 2.1. If f t is a Gaussian polynomial then the Hilbert
Ž .polynomial of F I has degree at most 1.

Ž .Proof. Denote d s deg f . For any integer n, by definition we have
Ž n. Ž .nthat c f s c f . This implies that

n
dim F I s n c f F dn q 1, 2Ž . Ž . Ž .Ž .n

since f n has at most dn q 1 coefficients.
Ž .As dim F I is bounded by a polynomial of degree 1, the Hilbertn

Ž .polynomial of F I must be a form e n q e , of degree at most 1, that is0 1

dim F I s e n q e , n 4 0,Ž . n 0 1

as asserted.

By abuse of terminology we say that e n q e is the Hilbert polynomial0 1
Ž .of f t .

Ž .At this point we have not used the Noetherianess of R, just that of F I
which is finitely generated over the residue field k s Rrm. If k is infinite,
Ž .F I admits a Noether normalization

w xk z ¨ F I ,Ž .

where z is a set of 1 or 2 algebraically independent elements according to
Ž .whether the Krull dimension dim F I is 1 or 2, which is reflected in its

Hilbert polynomial by the conditions e s 0 or e / 0, respectively. Fur-0 0
Ž .thermore, the elements of z can be chosen in degree 1, z ; F I . When1

lifted to I this gives rise to an equality

I n s a, b I ny1 3Ž . Ž .

Ž . Ž Ž . .valid for all n 4 0. The ideal J s a, b ; I or just J s a if e s 0 is a0
Ž w x .reduction of I see 8 for these basic facts .

Ž . ŽIf k is finite, we make a field extension such as k ª K s k x or, at the
Ž . w x .local ring level, the faithfully flat extension R ª R x s R x thatm Rw x x

leaves the Hilbert function unchanged and obtain the equality

I nR x s a, b I ny1R x , 4Ž . Ž . Ž . Ž .

Ž . Ž .where a, b ; IR x . Note that we are not asserting that the polynomial
Ž .f t remains Gaussian after the base ring change, only that its Hilbert

polynomial is unchanged.

Our means to test Conjecture 1.1 are the following two elementary
criteria.
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Ž .PROPOSITION 2.2. Let R be an integrally closed local domain and let f t
Ž .be a Gaussian polynomial. Then c f is principal if and only if e s 0.0

ŽProof. By the faithfully flat change of rings indicated above which
Ž ..preserves normality and the Hilbert polynomial of f t , we may assume

that the residue field is infinite.
n Ž . ny1If e s 0, we have I s a I for some n G 0, which means that the0

elements of the fractionary ideal Iay1 are integral over R, and thus
Ž .I ; a . The converse is clear.

Ž .PROPOSITION 2.3. Let R be a local domain. If f t is a Gaussian
Ž . Ž .polynomial where c f is generated by at most 2 elements then c f is

principal.

Ž . Ž .Proof. If c f is not principal, suppose the generators a, b of c f
Ž .occur in degrees m and n achievable through Nakayama lemma . We

write

f t s ag t q bh t ,Ž . Ž . Ž .
Ž . Ž .where g t has a coefficient of 1 in degree m and 0 in degree n, and h t

has in those degrees the reverse coefficients.
Ž . Ž . Ž . Ž . Ž .Consider the polynomial r t s ag t y bh t , c r s a, b . By hypoth-

esis
2c f ? r s a, b ,Ž . Ž .

while

c f ? r ; a2 , b2 .Ž . Ž .
2 2 Ž .2Thus a and b form a generating set for a, b .

Ž . Ž . Ž . Ž .Now consider the polynomial q t s bg t q ah t . Note that c q s
Ž .a, b . By hypothesis,

2c f ? q s a, b ,Ž . Ž .
while obviously

c f ? q ; ab, a2 q b2 .Ž . Ž .
This means that

2 2 2a, b s ab, a q b .Ž . Ž .
Ž . Ž .2If a, b is not principal, this equation says that a, b is minimally

generated by ab and a2 q b2. It follows that

ab s a a2 q b b2 ,

where either a or b is a unit.
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Ž . Ž . Ž . Ž .Consider now the polynomial p t s b bg t q a ah t . Then c p s
Ž .b b, a a , and from

f t ? p t s babg 2 q a a2 q b b2 gh q a abh2 ,Ž . Ž . Ž .

we get

a, b b b , a a s c f c p s c f ? p ; ab ,Ž . Ž . Ž . Ž . Ž . Ž .

Ž .Ž . Ž .but since a or b is a unit ab g a, b b b, a a . Therefore ab s
Ž .Ž . Ž . Ž .a, b b b, a a and c f s a, b is invertible.

3. PRIME CHARACTERISTIC

We establish the conjecture for these algebras. In this section, it will be
seen that ‘‘finite’’ will refer to the characteristic of the residue fields of
local rings.

Ž . ŽTHEOREM 3.1. Let R, m be a local integral domain not necessarily
. Ž .Noetherian with residue field of characteristic p ) 0. If f t is a Gaussian

polynomial o¨er R then e s 0. In particular if R is also integrally closed, then0
Ž .c f is principal.

Proof. The proof is similar to that of Proposition 2.1, except that we
take n to be of the form pm, with p s char Rrm. We claim that

n nn c f s n c f F d q 1,Ž . Ž .Ž .Ž .

Ž .which will permit us to obtain e s 0, since the Hilbert function of F I is0
bounded. For this, it suffices to note that for m s pn, the coefficients of

m Ž .f are combinations of mth powers of the generators of c f and power
products of ‘‘degree’’ m in those elements:

m a a0 da ??? a , a s m.Ý Ý0 d ia , . . . , až /0 d

Since all the multinomial coefficients, except those with a single power am,i
are divisible by p, by Nakayama lemma all those mixed powers can be

Ž .mthrown away in the generation of c f .
The last assertion now follows from Proposition 2.2.
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4. CHARACTERISTIC ZERO

We discuss the conjecture in rings of characteristic zero but only settle it
for Noetherian rings.

Ž .Let R be a local ring containing the rational numbers and assume f t is
a Gaussian polynomial. We can now be much more precise regarding the

Ž n. Ž .function n I , where I s c f .

PROPOSITION 4.1. If R is a local ring containing the rational numbers Q
Ž .and f t is a Gaussian polynomial with Hilbert polynomial e n q e then0 1

e F 1.0

Ž .Proof. By assumption the ideal I admits a reduction a, b , that is there
sq1 Ž . s Ž .exists an integer s such that I s a, b I , with a, b ; I, guaranteed by

the fact that the residue field of R is infinite.
Consider the polynomials

g t s aib jt i ,Ž . Ý
iqjsrn

where r, n are arbitrary positive integers. Suppose now that n ) s and r is
still arbitrary. We have

n r nn n r nqnc f t ? g t s c f ? c g s I a, b s I ,Ž . Ž . Ž . Ž . Ž .Ž .
Ž .nsince f t is also Gaussian. Thus

n I r nqn s e rn q n q e F dn q rn q 1,Ž . Ž .0 1

Ž .n Ž .since c f ? g t has degree dn q rn and therefore its content can be
generated by at most dn q rn q 1 coefficients. This implies that

d r 1 y e d y 1 1 y e1 1
e F q q s 1 q q .0 ž /r q 1 r q 1 r q 1 n r q 1 r q 1 nŽ . Ž .

Given that n and r can be made arbitrarily large and e is an integer while0
d and e are fixed, we must have e F 1, as asserted.1 0

Ž .THEOREM 4.2. Let R, m be an integrally closed Noetherian local do-
Ž .main containing the rationals and let f t be a Gaussian polynomial. Then

Ž .c f is principal.

Ž . Ž .Proof. Let J s a, b be a reduction of the ideal I s c f . We first
show that I s J. If I / J, let p be a minimal prime ideal of the annihilator
of the module IrJ. Localizing at p , preserves all the hypotheses: R isp
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Ž .integrally closed, contains Q, and f t is still Gaussian. Changing notation
we will still denote this localization R and its maximal ideal by m and may
assume that IrJ / 0 is a module of finite length and dim R G 2.

w x w x w xLet R JT be the Rees algebra of J; the embedding R JT ¨ R IT
w x w xmakes R IT a finitely generated module over R JT . By Proposition 4.1,

Ž .we may assume that the Hilbert polynomial of f t is a form n q e . This1
Ž . w xmeans that the ring F I s R IT m Rrm is a module of rank 1 over the
Ž . w x Žring of polynomials F J s R JT m Rrm which is its Noether normal-

.ization .
The ideal J being generated by two elements of a normal Noetherian

w xdomain, it is of linear type according to 6, Proposition 1.5 . This means
w xthat the Rees algebra R JT coincides with the symmetric algebra of J

Ž w x .see 12, Chapter 2 for a full discussion of these conditions . In particular
Ž .if L denotes the module of relations of the ideal a, b ,

0 ª L ª R [ R ª a, b ª 0,Ž .

w xthe algebra R JT has a presentation

w x w x w x0 ª L m R x , y ª R x , y ª R JT ª 0, x ¬ aT , y ¬ bT .R

Ž .LEMMA 4.3. Let M s m , aT , bT be the irrele¨ant maximal ideal of the
w xgraded algebra R JT . Then the grade of the ideal M is at least 3.

Ž .Proof. This grade can also be determined as the P s m , x, y -depth
w x w xof R JT as a module over R x, y . Since R is integrally closed of

dimension at least 2, the grade of m is at least 2 and therefore the grade
of P is at least 4. By the same token, the module L, being a syzygy module

w x w xof an ideal, has m-depth at least 2 so that the R x, y -module L m R x, yR
will have P-depth at least 4. We now may use the depth-lemma on the

Ž w x.exact sequence see 3, Proposition 1.2.9 , to get the assertion.

We are now ready to assemble all parts of the proof of the theorem.
Consider the embedding of Rees algebras

w x w x0 ª R JT ª R IT ª C ª 0, 5Ž .

w xviewed as a sequence of R JT -modules. By assumption, I and J coincide
in every proper localization of R, and therefore C is annihilated by some

wpower of m. Using precisely the same argument in the proof of 11,
xProposition 2.2 , we are going to show that the module C is either zero

Ž . w xand I s J as desired or has Krull dimension 2 and m R JT is its unique
associated prime ideal.

w xSuppose C / 0 and let P be a prime ideal of R JT which is associated
to C; since C is a graded module, P is a homogeneous ideal. We claim
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w xthat P s m R JT . Note that otherwise, as m must be contained in P and
w x Ž . Ž .dim R JT rP F 1, M is minimal over P, h for any homogeneous

element in M _ P. This implies that grade P G 2, since under these
conditions the grade of M can go up by at most 1 from grade P.

Ž w x . Ž .Applying the functor Hom R JT rP, ? to the sequence 5 , we getRw J T x
the exact sequence

w x w x w x w x0 ª Hom R JT rP , R JT ª Hom R JT rP , R ITŽ . Ž .Rw J T x Rw J T x

w x 1 w x w xª Hom R JT rP , C ª Ext R JT rP , R JT ,Ž . Ž .Rw J T x Rw J T x

where the modules in the top row vanish by natural reasons and

1 w x w xExt R JT rP , R JT s 0,Ž .Rw J T x

w xbecause grade P G 2. This shows that P s m R JT and establishes that if
C / 0 then its Krull dimension must be 2.

Ž .As the final step, tensoring 5 with Rrm we get the exact sequence

w
F J ª F I ª CrmC ª 0.Ž . Ž .

Ž .Note that w must be an embedding as F J is a polynomial ring of
Ž . Ž .dimension 2 and F I is finite integral over it of the same dimension.
Ž . Ž .Since the rank of F I over F J is e s 1, CrmC must be a module of0

Ž .rank 0 over F J , that is the Krull dimension of CrmC is less than 2.
Suppose that dim CrmC - 2, which means that there is an ideal L ;

w x w x w xR JT such that L o m R JT with L ? C ; mC. Localizing at m R JT
w xand using Nakayama lemma, we get that there exists h f m R JT such

w xthat hC s 0. This contradicts the assertion above that m R JT was the
only associated prime of C.

Ž . Ž .Finally, with c f s I s J s a, b , we appeal to Proposition 2.3 to
complete the proof.

Putting Theorems 3.1 and 4.2 together, we have:

THEOREM 4.4. If R is a Noetherian normal domain then Conjecture 1.1
holds.

Remark 4.5. If R is not integrally closed one may still say something
Ž . Ž .about the content of a Gaussian polynomial f t , after noting that f t is

still Gaussian as a polynomial over the integral closure S of R. If S is
ŽNoetherian, one can easily see that e s 0 the ‘‘old’’ and ‘‘new’’ e ’s0 0

.coincide . If S is not Noetherian, S is still a Krull domain and its prime
w xspectrum is Noetherian 5 . These conditions may be sufficient to allow for

modifications in the proof that lead to e s 0.0
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