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1. INTRODUCTION.

Let R be a commutative ring, let G be a group of automorphisms of
R and denote by RC the fixed subring of R. R®=(xeR/ g(x) =x forall
geGl.

In this paper we explore the conditions under which the finiteness
property of coherence and several other related homological properties of R

- are inherited by RC. The paper is divided into three sections.

Section 2 investigates descent of coherence from R to RC. This
question has its roots in the classical investigations of descent of finiteness from
R to R camied out by Zariski and Rees--to partially solve Hilbert's fourteenth
problem [22], and by Emmy Noether--to determine when is R® an affine
algebra [1]. More recent and more closely related to the question of coherence
is the determination of conditions under which we have descent of
Noetherianess. This question was explored in both the commutative and the

noncommutative settings by several authors {2, 4, 6, 19, 20, 21). In this section
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we determine conditions under which descent of coherence is possible and
construct several examples that show that the restrictions imposed on R and on
G to insure descent of coherence cannot be relaxed.

Section 3 and Section 4 deal with aspects of descent of coherent
regularity from R to R®. This kind of investigation is part of a general
pattern of exploration of coherent regularity (8, 10], and is also related to recent
investigations into the relations between projectivity over R and over RC® [15,
17). More particularly:

Section 3 concentrates on descent of coherent regularity in the classical
cases, that is in the cases where R is a coherent ring of w.dim R < 1. These
cases cover Yon Neumann regular, and semihereditary rings. The appropriate
conditions necessary for descent in these cases were already known (2, 3, 14].
We expose the underlying reason for the ease of descent in these cases, namely,
the prevailing existence of faithful flatness. In this section we also explore
several instances where R is actually a projective R® module.

Section 4 considers general descent of coherent regularity. It is shown,
by an example, that for rings R with w.dim R 2 2, the conditions which
insured descent of coherent regularity for smaller weak dimensions no longer
suffice. We then impose several stronger restrictions on R and on G under

which general descent of coherent regularity is still possible.
2. COHERENCE.

Let A and B be tworings. A is called a module retract of B if
A c B and there exists an A-module homomorphism ¢:B — A saticfving
¢(a) = a for every element a of A. If such a map ¢ exists it is called a

1 ion map.
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Note that if A is a module retract of B, then the module retraction map
¢ splits the identity map of A, thus B contains A asan A module direct
summand. It follows that A isa pure A submodule of B and that no proper
ideal of A blows upin B.

In [2] Bergman points out the existence of module retraction maps
¢:R4 R® in several cases:

(1) G is a finite group and o(G), the order of G, is a unitin R. In

this case forevery x € R ¢(x) = aé; gEE:G g(x)..

(2) G is alocally finite group ( that is for every x € R the orbit of
x, Gx has finite cardinality n(x) <« ), and n(x) is a unitin R
forevery x in R. In this case forevery x € R,

1
o) = n(x) y%ny.

Bergman proves [2] that if R® is a module retract of R and R isa
Noetherian ring then so is RC. That this result cannot be much improved one
can see by considering the example of a finite group and a Noetherian ring R
with no o(G)-torsion which fails to descent Noetherianess [4, 21], and the
example of an infinite cyclic group and a P.I.D. R which fails to descent
Noetherianess {2].

In case R is a coherent ring it is necessary to impose stronger

restrictions than the existence of a module retraction map from R to RC.

THEOREM 1. Let R be a coherent ring, and let G be a group of

then G
(1) G is a locally finite group or R°_is a module retract of R and

R_isa flat R® module,
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@ RO ule retract of R_and R i itel

Proof: (1) If G is a locally finite group R is an integral extension of
R® [21], and thus in both cases R is a faithfully flat R® module. It follows -
that R® is coherent along with R [9, Corollary 2.4.5).

(2) Let ¢:R—R® be a module retraction map. Let R be a free R
module with basis e and let (RG)n be a free R® module with basis

ei.....e"‘. Then @ can be extended to an R® module homomorphism, also
denoted by @, ¢:R" — (R®)", where for 1, e R ¢ ) re) = )y lry)e;.
i=1 i=1

Let I=(a,..a,) be a finitely generated ideal of R® and let

0—K—R" f.IR 0 be anexact sequence of R modules with

f(ei) =2, 1<i<n. Then K=kerf is afinitely generated R, and hence RS,
module. If the sequence 0 — 1L — ®HM L1 —10 with

f '(ei) =a. 1<i<n,is an exact sequence of R® modules, then ¢ maps K

i
onto L. It follows that I is finitely presented and so RC is a coherent ring.

We now construct a series of examples which show that the restrictions

imposed on R and on G in Theorem 1 cannot be relaxed.

EXAMPLE 2. Finite groups.
Let k be a field of chk# 2, let x,y and {zi]

o«
.

i=1 be indeterminates

over k, and let R = k[ X.Y:Z; i21]. R isacoherentring.
Let g be an automorphism of R defined by: g(a) = o forall aek,
g(x) = =x, gly) = -y, g(zi) =z, for i21,and let G =<g>, then o(G) =2 is



FIXED RINGS OF COHERENT REGULAR RINGS 2639

a unitin R, and so RC is a module retract of R.
R®= k{ xz,yz,xy,z:%,xzi,yzi, i21,] is not a coherent ring since the ideal

(xy: x2 )=( yz,xy,yzi, i21,) isnot a finitely generated ideal of RS

A somewhat weaker example is provided by the well known Nagarajan's
example [21). We sketch it here. Let R = F[[ x,y ]] be the power series ring
in indeterminates x and y over the field F = Z2( ai’bi' i21 5, where 22 is
the prime field of characteristic 2, and a,,b;, i21 are infinitely many
indeterminates. Set py=ax+ b,y, and define an automorphism of R,g, by
gx)=x,8y) =y, g(ai) =a,+yp .1 g(bi) = bi +XP; 1 i2 1. Let
G = <g>, then O(G) = 2, but two, of course, is not a unitin R. In [21] it is
proved that R® is not a Noetherian ring. William Heinzer pointed out that RC
is not a coherent ring as well. To see this he provided the following argument:
RC isa strongly Laskerian ring [11). Let P be a prime ideal of RC. Since
R, as a Laskerian ring, has a Noetherian spectrum, P is the radical of a finitely
generated ideal, say I. Since RC is strongly Laskerian P=1:a for some
element a of RC. If R® were a coherent ring, this will imply that P itself is

finitely generated and, hence, that RC is Noetherian.

EXAMPLE 3. Infinite groups

The constructions described here are based on a similar construction of
Bergman [2], with the idea going back to Gilmer [7).

Let A be an integrally closed domain with field of quotients K. For a
valuation v of K denote by K v {xeK,v(x)20 ) the valuation ring of
v. Let V= {v, v valuation on K such that AcK }. Since A is integrally

closed A=n Kv.
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Let t be an indeterminate over A, v extends to a valuation of A[ t ] as

follows: v( ant“+- et ) =min v(ai).. v now extends to a valuation of the
1

field of quotients of A[t], K(t).

Let R=nK(t), = {P@®/QW®,P®,QM) € Al t], v(P(t)) 2 v(Q()), for
allve V). R is a Bezout domain [2] and therefore a coherent ring.

Let B beasubringof A. If be B,P(t)e A[t] and ve V we have
v(P(t+b) = v(P(t), hence using —b, we conclude that v(P(t+b) = v(P(t)).

Consider the automorphism @ Alt]—A[t]), (pb(t) =t+b. ®, can
be extended to K(t) and is v invariant, thus @, gives an automorphism of
R. Let G={ o }beB' If B isinfinite then K(t )c =K and thus
RE=K(1)°nR=KnR=nK(t) nK=A.

"The examples now depend on the choices for A and B. Let k bea
field, let x,y be indeterminates over k, and let A =Kk y,xiy Jcklyx] A is

2)'A =( Xzyz,xsyz,x4y2,... ) is not a finitely

not a coherent ring since XxyA N x
generated ideal of A. A is integrally closed [ 12, example 3 ].

If we pick k to be an infinite field of characteristic p >0, and B =k,

then every element of G has order p. Thus we obtain an example where R
is coherentof chR =p>0Q. G is an infinite group where each element has
finite order and RC = A __is not coherent.

If we pick B=k and chk =0 noelement of G has finite order.

We can modify this construction to obtain an even sharper example.

Let A be a noncoherent Krull domain of characteristic zero. Such a
ring is constructed in [S]. More specifically the example constructed in [5] is of
a Krull domain of Krull dimension three with a prime ideal P of height one

which is not finitely generated. Since a height one prime ideal of a Krull
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domain is an intersection of two principal fractional ideals, we have that A is
not a coherent ring. We now follow the above construction using instead of
A[t], thering A[ s,t,s"l,t_l ] where s and t are indeterminates, the set
V = { v, v essential valuation of A }. Bergman {2] shows that in this case R

is actually a P.LD., and G may be chosen such that G = <g> is an infinite

cyclic group.

We conclude this section with an amusing case where R descends
coherence without necessarily being coherent. Recall that a ring R is called a

p.p. ring if every principal ideal of R is projective.

PROPOSITION 4. Let R beapp.ring.let G be any group such that
gl.siim_BG <2 then R is a coherent ring.

Proof: Since R is a p.p. ring so is R® [14]. It follows that the set of
minimal primes of RG, Min( RC ), is compact [9, Theorem 4.2.10). We now

conclude that RG is a coherent ring by {24, Proposition 6.1].
3. FLATNESS.

Aring A is called a regular ring if every finitely generated ideal of A
has finite projective dimension. This notion which has been extensively studied
for Noetherian rings has been extended to coherent rings with a considerable
degree of success. For a coherent ring A the regularity condition is closely
related to the behaviour of the weak dimension of modules over A. In

particular a coherent ring of finite weak dimension is a coherent regular ring
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although the converse is not necessarily true [9, Chapter 6, Section 2]. The
classical examples of coherent regular rings are Von Neumann regular rings,
that is rings of weak dimension zero, and semihereditary rings, that is precisely
those rings which are coherent and of weak dimension less or equal to one [9,
Corollary 4.2.19].

Our interest lies in descent of coherent regularity from R to RC. The
cases where the weak dimension of the ring is less or equal to one have been

solved by Bergman [2] and Jgndrup [14], as follows:

THEOREM 5 ({2}, (14]). (1) Let R be a Von Neumann regular ring
nd 1 n f morphi RC is a_Yon Neumann
regular ring.

(2) R i itary ring an

morphis hat eith is locally finite or RC is a module _
retract of R, then R® is a semihereditary ring,

We remark that both Bergman (2] and Jondrup [14] proved that if R is
a semihereditary ring and G is a finite group then RC isa semihereditary
ring. One extends this result to locally finite groups by noticing that Jgndrup's
proof depends only on the existence of finite cardinality orbits for every element

of R.

In general we have that if R isa faithfully flat extension of RG. and R
is a coherent ring of finite weak dimension then R® is a coherent ring of finite
weak dimension and w.dim RC < w.dim R [9, Theorem 3.1.1.]. Theorem 7
shows that the underlying reason for the ease of descent of Von Neumann
regularity and semihereditarity is the presence of faithful flatness in all cases

where descent is known to occur.
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LEMMA 6. Let R be aringandlet G be aJocally finite group of
i F R | | f R with orbit_Ga of

cardinality n. Denote by 0,(a). ....G (a) the elementary symmetric functions
of a thatis o,(a) = X @= X ’ =1

1 ),=Ga¥_'_£!:z y,u’ EGax_y_‘....Qn ye Gax_mﬁn

n M’
Am @c N Am (o@)cAm (a")

R i=1 RGL‘zl R

Proof: Let x € R® satisfying xa =0, then xg(@)=0 forall ge G
n
and so xoi(a) =0 forall i. This proves that Ann G(a)(,,: N Ann G( o.(a) ).
R i=t R® !

Now assume that x € R® and xo‘i(a) =0 forall i, to see that xa" = 0 note

that a satisfies the equation 0 = I'IG (a-y)=a" - ol(a)a""'l+... 1), ().
A yeGa

THEOREM 7. Let R be aring and let G be a group of

automorphisms of R.

(1) 1£ RS isa Von Neumann regular ring then R_is a faithfully flat R°
2

3)

Proof: (1) In order to show that R is a faithfully flat R® module it

suffices to show that for any proper ideal m of R® we have mR #R.
Assume the contrary, then mR =R for some ideal m of R implies that there

exists a finitely generated ideal Jcm with JR =R. Since R® is Von
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Neumann regular J = eR® for some idempotent e € R®, but then JR =¢eR =R
implies e = 1, so m is not proper.

(2) Since R is an integral extension of RC it suffices to show that R
isafla R® module. Let M be a maximal ideal of R and let m =R% M.
We need only show that RM is a flat Rg module. Since RC isa
semihereditary ring we have that R; is a valuation domain, therefore RM is
a flat RI?I module if and only if RM is a torsion free Rr?n module.

We now show that Ry is a torsion free Rr?x module. We first note
that if x € R® is a nonzero divisorin RC then x isa nonzero divisor in R.
For assume that xa =0 for some ae R then by Lemma 6 x oi(a) =0 for all
elementary symmetric functions of a. As O'i(a) € R® we have oi(a) =0, but
then a" =0, and so a=0.

Since R; is a domain it follows that every zero divisor of R®
localizes to zero or to a unit in R:;’l. Nowlet x=1/s € R; and a=ufve Ry
satisfying xa = 0, then there existsa we R —M suchthat wur=0inR. It
follows that either wu =0 or r is a zero divisor in RC. In the first case
a=0. In the second case a=0 if re m and x=0 if re m. Thus Ry, is
a torsion free R:l module.

(3) Asin (2) we need only show that if M is a maximal ideal of R,
and m=R°AM then Ry is a torsion free R:, module. But R; cRy

and by [9, Theorem 4.2.2) RM is a domain. The claim now follows.

In spite of the faithful flatness R might fail to be a projective R®
module even in case R® is a Von Neumann regular ring [15, Example 5).
Nevertheless there are some cases where this actually happens. Jgndrup [15]

roved that if R® is a semiheredi ring, G is a finite group of
p tary
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automorphisms of R and R is either a reduced ring and a cyclic R® module,

or o(G) isaunitin R and R is a finitely generated RS module, then R is

a projective R® module. We show that one can considerably relax the

conditions on R and on G and still maintain the same conclusion, provided

the generators of R over R® are of a special kind.

R®_algebra,
(3  R®_is semihereditary and R_is a reduced ring and a finitely presented
R® module,

Proof: (1) Let R= aR® for some a e R. It suffices to show that

Am_ (a)= eR® for some idempotent e ¢ RC. Since R is a reduced ring
R

n
we conclude by Lemma 6 that Ann c( a)= Am G( 0.(a) ), where ©.(a)
R i=1 R® ! !
are the elementary symmetric functions of a. RC isa p.p. ring therefore
Ann G( O'i(a) )= ciRG for some idempotents €€ R®. Thus
R
— oRC e . .
AnnRG( a)=eR” for e= € ey

(2) let R= RG[ €1y ] for a family of idempotents € ), € R.
Then R is generated as an R% module by the following family of
idempotents: £ = { e 1<i<nm eiej, i<j1Zij<n; ... €8y |3

Construct a new family of idempotents in R as follows:
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F={f.=e N(l—-e),1gisnf,.=ee. Il (l-e)i<j1gij<
e ) oMy K

n; ...;f =eey..C }. One can easily check that the idempotents in F are

l..n
mutually orthogonal, that is f-f’ =0 forevery ff’ € 7, and that

R =RY €1y 1= fea}_tRG. Therefore to show that R is a projective RC®
e

module we need only show that fRC isa projective R® module for every
idempotent fe R. Since f" = f for any positive integer n, we have by

Lemma 6 that Ann c;( f) is generated by an idempotent and thus fRC isa
R .

projective R® module.
(3) By Theorem 7 R is a flat R® module, and since it is finitely

presented it is actually projective.

4. REGULARITY.

Let R be a coherent regular ring. If w.dim R 22 R might fail to be
coherent regular even when RC is a module retract of R, G is finite, both R

and RC are Noetherian rings, and R is a finitely generated R® module.

EXAMPLE 8. Let k be a field of characteristic zero. Let R =k[ x,y ]
the polynomial ring in two variables x and y over k. R isa Noetherian
regular ring of w.dim R =gl.dim R = 2.

Let g be the automorphism g(a) = o forall a in k, g(x) = -x,

g(y) = —y, and let G =<g>, then o(G) =2 isa unitin R. RC = k[ xz,xy,y2 ]
is a Noetherian ring, with w.dim Re=w [6].. Since RC is a module retract of

R we have: gl.dim RS< gl.dim R + proj.dim c;R [16]. It follows that
R
proj.dim R =e. Since R is a finitely generated, hence finitely presented R®
R

module, this means that RC isnota regular ring.
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We will show in Theorem 10 that what went wrong in this example is

precisely the fact that proj.dim R=>
R

LEMMA 9. Let R be aringandlet G be a group of automorphisms
of R such that R® is amodule refract of R and n = projdim R <. Let
R
L be an ideal of R? and assume that projdimpIR = m. then
projdim 1< n+m
R

Proof: We have that
proj.dim gIR £ proj.dimpIR +projdim R =n+m[15]. Let ¢ be the
R R

module retraction map from R to R, then ¢ maps IR onto I and provides
a splitting for the identity map on I. Thus IR *Ie N for some R® module
N. Let M be any R® module then for s>n+m

0= Ext; o(leNM) = Ext;G( IM)e Ext;G( N,M ). Therefore

Ext® (LM)=0 and proj.dim Gg<n+m
R R

As a corollary using [9, Corollary 2.5.5] we immediately obtain.

THEOREM 10. Let R be aring andlet G be a group of
t i R_such C is a module retract of R_and
n=proidim R < Thenif R isa regular ring so is R If in addition R
R
herent ri wdimR=m < n_w.dim G<=g+m,

COROLLARY 11. Let R bearingandlet G be a group of
automorphisms of R_such that either R is a faithfully flat RS module or R
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is a module retract of R and R is a finitely generated RG module_of finite
. . !l . IE E . l l . ] i RG -am
w.di BGSW!. R + proj.di
RG&

Proof: Use Theorem 10 and [9, Theorem 6.2.5].

We know of only one case where the homological restriction

n = proj.dim GR < = may be somewhat relaxed. Recall that a ring A is
R

called jso_Ngc_mgjmif every ideal of R is countably generated.

COROLLARY 12. Let R be an Rq Noetherian coherent regular ring
andlet G be a group of automorphisms of R such that R is a module

remact of R and R_is a finitely generated R® module of finite weak
dimension. then RC is a coherent regular ring and
w,ﬂijG<w i + wdi :E+1,
R
Proof: We first show that if R is an RO Noetherian ring and R isa
module retract of R with retraction map ¢ : R — RG, then R® isan L)

Noetherian ring. To see this let I be an ideal of RC. Lei [a },a €IR bea

countable generating set of IR as an R module. Let a,= g Ui with
=]

eI and Toi .eR. Ifaelthen a= X (g umrm)sa for some
finite i=1

Sq € R. Apply ¢ to both sides to conclude that { ¢(u o )} generate L
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We now apply [23, Lemma 1.1] and [24, Lemma 0.11] to obtain that if

R isalso X, generated over R® then projdim _R £ w.dim _R+ 1. The
0 RC RC

result now follows.
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