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DIFFERENTIAL CRITERIA FOR FLATNESS

SARAH GLAZ

Abstract. We introduce differential algebra methods to the study of flatness over

Noetherian domains. The results concern the specific cases of ideals and attempt to

use the underlying divisibility properties of the ring. They concern mostly regular

(geometric) rings and one-dimensional rings.

Introduction. The purpose of this paper is to introduce new criteria for flatness of

ideals in commutative, Noetherian rings. The methods generally used in the

literature are homological in nature. We introduce differential conditions which

will imply flatness of ideals in certain types of rings.

Let A be a Noetherian ring, and let d: A -* M be a derivation from A to an

A -module M. For two elements / and g in an ideal I of A, let A¿(/, g) = fd(g) —

gd(f). Then A¿(/, g) G IM, and, if / is a flat ideal of A, A/f, g) ÊI2M [7].
We introduce the following conditions:

(Dl) For each A-module M, every derivation d: A -» M and any two elements f

andginI,k4(f,g)El2M.

(D2) For every derivation d: A -» A and any two elements f and g in I, A¿(/, g) E

I2.

We investigate to what extent condition (Dl) imposed on an ideal /, implies its

flatness and in which types of rings conditions (D2) will suffice.

Let ($lA/z, D) be the module of Kahler differentials of A viewed as an algebra

over the integers Z, QA/Z, with the canonical derivation D: A -> &A/Z, and let /,/

and g be as above. The universal property of (&A/Z, D) ensures that A¿(/, g) G

I2M for every derivation d into an /1-module M iff AB(/, g) G I2®A/Z; hence the

problem could be discussed using the A -module £lA/z only. Unfortunately, one

does not have sufficient information about the module SlA/z, even in cases where

the ring A is relatively simple, to pursue an investigation along this line. It is more

practical to use other modules, e.g. A itself, as in condition (D2), or various

completions of over-rings of A.

Both differential conditions and the flatness property can be checked locally,

hence in the following we will let A be a local ring. Furthermore, to eliminate

trivial cases, we shall require A to be a domain.
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1. Regular rings. Let (A, m) be a regular local ring with maximal ideal m, the

characteristic of A and its residue field equal to 0. Let xx,.. . , xn be a regular

system of parameters for A. The w-adic completion of A, A, contains a coefficient

field K of charateristic 0. In fact A = ^[[x1; . . . , xn]], the power series ring in

xx, . . . , x„ over K, and Der^(yl) = E?_]/19/ó\x,, where d/dx¡: A -* A denotes the

partial derivation of A with respect to x¡, is a free module of rank n. If A contains a

field k over which A/m is separably algebraic, then k c K and E>exk(A) =

Der^i).

Let / be an ideal of A satisfying (Dl), then the ideal I A of A satisfies (D2).

Theorem 1.1. Let (A, m) be a regular local ring with ch A/m = 0 and let I be an

ideal of A satisfying (Dl); then I is flat.

Proof. We may assume A = K\{xx, . . . , xn]], K a field of characteristic 0 and /

satisfies (D2) and is not flat.

Consider first the case where / is generated by two elements. Since A is a unique

factorization domain [4], we may assume they form a regular sequence in /, and

thus I/I2 is a free .4//-module [3]. This implies that the second exterior power of

I/I2, A2(I/I2), is a free ^//-module. We will exhibit a nonzero element in A/1

which annihilates A2(I/I2) thus leading to a contradiction.

Let u, v and w be elements of 7", then u(v A w) = u(w /\ v) and 2u(v /\w) = 0.

Thus / annihilates A2/. Note that this implies A2/ = A2(///2). Next we note that

the differential condition for d = 9/3x, implies that du/dx¡ annihilates A2/ for

every element u of I. Indeed,

_3
dx,

;«(cA*)-(^)oA*-(^)«A»-«A^}

= uAv{-Liw) = u{-Liw)Av

= {-eiu)wAv = {ibiu)wAv-

Thus (du/dx¡)v /\w = Ofox I < / < n.

For a power series h in A we write h = hr + Hr where hr is the homogeneous

component of h of minimal total degree r in xx, . . ., xn, and Hr is a power series

with homogeneous components of total degree higher than r. We call r = deg(A).

Let u = ur + Ur be a power series in / of minimal degree r > 1; then du/dx¡ G

/ for some 1 < í < n, thus the class of du/dx¡ in A/1 is nonzero.

Next consider the general case:

Let u = ur + C/r in / as above. We call r = deg(/). We then have that deg(/2) =

2r. Let v = vr + Vr be anther element of / of degree r, then Aa/a (w, u) G I2,

deg A3/3x(«, o) > 2r - 1 and

We conclude that A3/3jc(wr, ür) = 0 for every i. Using the remark above we have

that vr is a multiple of «r (by an invertible element of A).



DIFFERENTIAL CRITERIA FOR FLATNESS 19

Let v = vn + Vn, n> r, be an element of / of degree n. If, for every integer

n > r, ur divides vn, then I Ç (u) + m' for every i, which by Krull intersection

theorem [4], implies / = (u). Let n > r be a minimal integer such that ur does not

divide v„.

We give a list of possible generators for /. The generators of / of degree r are of

the form ur + U'r. If w = ws + Ws is a generator of / of degree s <n,ur divides ws,

hence by subtracting suitable multiples of u from w, we can replace w by a

generator of degree higher than or equal to n. We then have a finite number of

generators of degree higher than or equal to n.

We expand A3/3x¡(w, v) as in formula (1) and set it equal to a summation of the

generators of I2 with coefficients in A. Since ur does not divide v„, A3/3x.(wr, v„) ¥= 0

for some i, and deg A3/3x(m, v) = r + n — 1. Comparing components of minimal

degree on both sides of the equality we obtain a power series z, such that

Aa/a* (ur, vn) = zu2. Applying the result of the case where the ideal is generated by

two elements we obtain an element w = aur + bv„ with a and b in A and

deg w < r, which generates the ideal generated by ur and vn. But then the element

w + all, + bVn E I and is of degree lower than r.

The following example shows that if (A, m) is a regular local ring of characteris-

tic 0, but ch A/m — p > 0, condition (Dl) does not necessarily imply flatness. Let

A = Zp[x], the polynomial ring in one variable over the integers localiza at a prime

number p. Let / be the ideal generated by p and xp, and let d: A -» M be a

derivation (necessarily over Zp) of A into an A -module M; then kj(p, xp) =

P2xp~xd(x). Thus &4(f, g) E I2M for every / and g in /, but / is not flat. This

example points out the need of enough derivations of the ring, hence the need to

restrict ourselves to equal characteristic rings.

Next we consider a subclass of the regular local rings for which condition (D2)

suffices to imply flatness.

Following Matsumura [5] we define:

Definition. A regular local ring (A, m) containing a field k is said to be of

analytic type over k if it satisfies:

(l) A/m is algebraic over k andch(k) = 0,

(ii) rank Derk(A) = Krull dim A.

For such a ring (A, m) we have that the derivations 9/cbc,. of the w-adic

completion of A, map A into itself [5], hence we conclude:

Theorem 1.2. Let (A, m) be a regular local ring containing a field k and of

analytic type over k, and let I be an ideal of A satisfying (D2), then I is flat.

2. One-dimensional rings. Let A; be a algebraically closed field of characteristic 0,

and let (A, m) be a one-dimensional, local /c-algebra essentially of finite type, with

v4/m ~ k. Assume A is an analytically irreducible domain and let A denote the

integral closure of A in its quotient field. We have that every localization of A at a

maximal ideal n of A, An, is a discrete valuation ring with residue fiekiisomorphic

to k (Krull-Akizuki theorem, [6]). Thus the n-adic completion of A„, (A„), is equal

to &[[*]], a power series over k, where x is the uniformizing parameter of An [2]. In
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this case we have an embedding of finite type A tL^(Aa) [8]. Let x^Äflx]] be the

conductor ideal of k[[x]] into A; then A/xNk][x]] is generated as a vector space

over k by the classes of {1, hx, . . . , hk}, where A, are power series in k[[x]] with

n¡ = deg h¡ = initial power of x in h¡, strictly less than N. Thus every element of A

can be written as a ^-linear combination of {1, hx,. . ., hk} plus an element of

x^AjTx]]. We readjust the above set of power series so as to have the following

properties:

(1) I < nx < n2 < . . . < nk < N.

(2) If n¡ = jnx for some 1 < / < k and some j, then h¡ = h{.

For a subset S of k[[x]] put v(S) = {n; n = deg/,/ G S} and note that v(Â) =

[0, nx, . . . , nk, N, N + 1,  ...).

Let / be a nonflat ideal of A which satisfies (Dl), and let/be a nonzero element

of J of minimal degree n > 0. Let g be an element of J of degree m^n which is

not a multiple off. The Krull intersection theorem [4] allows us to pick g such that

m = m — n G v(A); let m be minimal satisfying this property. We then readjust a

set of generators for J, by subtracting suitable multiples of / from necessary

elements, to consist of / (necessarily in every minimal set of generators of /) and a

finite number of elements of degree higher than or equal to m.

Let d: A -» k[[x]] be the restriction of the derivation d/dx of k[[x]] to A, and let

M be the .¿-module Ad(A); then d: A -» M. Note that an element of M can be

written as a A:-linear combination of [h'¡ (1 < i < k), h¡hj (1 < i,j < k)} and a

power series in x"-1^^)].

Next we consider Ad(f, g) an element of J2M of degree n + m — 1 = 2« +

(m — 1). Noting that a generating set for J2 will consist of f2 and elements of

degree higher than or equal to « + m, we necessarily have A¿(/, g) = /2e + F

where e G M, deg e = u — 1 and deg F > n + m — 1.

Theorem 2.1. Le/ (A, m) and k be as in the above discussion, and let I be an ideal

of A satisfying (Dl). If h¡ are monomials for every 1 < i < k, then I is flat.

Proof. We may replace A by A and thus assume A has the structure described

above and let J = IA. In this case a given integer does not belong to v(A) iff it

does not occur as a power of x in any element of A. Since nx > 1 and u £ v(A),

u — 1 does not occur as a power of x in any element of M.

Proposition 2.2. Let (A, m) and k be as in the above discussion and let I be an

ideal of A satisfying (Dl). If J = IA satisfies u < nx or nx < u < n2 then I is flat.

Proof. Assume A = A and J = I. The case where u <nx is clear. If nx <u <

n2, the only element of M where xu~x can occur is of the form axh\ + a2hxh\ + G,

where ax, a2 G k and deg G > u. Since deg h\ = n, — 1 and deg hxh\ = 2nx — 1,

a, must be equal to 0, but then u — 1 cannot occur as an initial power.

Theorem 2.3. Let (A, m) and k be as in the above discussion, and let I be aprime

ideal of A satisfying (Dl), then I is flat.
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Proof. We may assume A is complete with the discussed structure and / is the

maximal ideal of A, m. Let f = hx and g = h¡, i minimal with the property that

u = h, - n, G v(A). For / < / we have that n, — nx E v(A) and since h,_xhx G A

for every / < /' we obtain n, - nx < n,_x for / < / and u = n¡ — nx < «,_,. Using

the second property of the set {hx, h2, . . ., hk} we obtain h, = h[ for / < /". As in

our previous results we aim to show that an element of degree u — 1 cannot be

written as a ^-linear combination of:

h\, h'2, . . . ,h'k

hxh\, hxh'2, . . ., hxh'k

hkh\, hkh!2, . . ., hkh'k plus an element in xN~ xk[ [x] 1.

Assuming this is possible, let the coefficients of the first row be a,, a2, . . . , ak, the

coefficients of the second row be ßx, ß2, . . ., ßk, etc. We have a, = 0. h2 = h\

implies h'2 = 2hxh\ and thus 2a2 + ßx = 0. Continuing the diagonalized annihila-

tion (e.g. h3 with hxh'2 and h2h\) we obtain an initial power of degree higher than

«,_, - 1.

Proposition 2.4. Let (A, m) and k as in Theorem 2.3, and let I be an ideal of A

satisfying (Dl) with J = I A generated by h¡, s < / < k for some fixed s > 1. Then I

is flat.

Proof. Put/ = hs and g = hi+s some i > l,i + s minimal such that ni+s — ns G

v(A). Note that n,+s — ns < n¡ for I < i and ni+s — ns < n¡. Thus n, = lnx for / < i

and the proof follows.

The following example will show that even in the case where h¡ are monomials

and / is a prime ideal of A, condition (D2) will not suffice to imply flatness. Let k

be an algebraically closed field of characteristic 0. A = k[[t2, t3]] and / the ideal

generated by t2 and t3. Let d: A -» A be a derivation over k. Then d((t2)3) =

d((t3)2) and 3t4d(t2) = 2t3d(t3) which imply d(t2) and d(t3) have no constant terms.

Hence d(I) c I and / satisfies (D2) without being flat.

A full solution of the one-dimensional case will be of value in extending the

differential criteria of flatness to affine domains.

Conjecture. Let k be a field of characteristic 0, and let (A, m) be a one-dimen-

sional, local, essentially of finite type k-algebra, which is a domain. Let I be an ideal

of A satisfying (Dl); then I is flat.

Based on the validity of this conjecture we prove:

Theorem 2.5. Let A be a Cohen Macaulay affine domain over a field of character-

istic 0, and let I be an ideal of A satisfying (Dl); then I is flat.

Proof. We may assume A is local with maximal ideal m, Krull dim A = n and

the theorem is true for lower dimensional Cohen Macaulay affine domains.

Let/»!, . . . ,p„ be the prime ideals associated with /. By the induction hypotheses

ht(p¡) = 1 or p/ is equal to tn, hence I = J n L, where / is an intersection of height
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one ideals associated with thep,'s which have height equal to one and L = 0 or L is

an m-primary ideal.

Construct the faithfully flat extension of A, A(x) = ^[x]m/4[jc].

Case (i). / = J n L, L ¥= 0; let a and b be a regular sequence in L\ Unt07)-i/>/

and/ = a2x + b2. Note that/ G mLA(x) and that (/) is a prime ideal of A(x). By

the induction hypothesis IA(x) + fA(x)/fA(x) at IA(x)/fA(x) n IA(x) is flat. By

the choice of / we have fA(x) n JA(x) = fJA(x) and thus fA(x) n IA(x) c

/n/Vl(x). We conclude that IA(x)/mIA(x) is flat and IA(x) is flat.

Case (ii). I = J; pick a in / and ¿> in m \ ((Up,) U (U <?,)) where a, run over the

associated primes of (a). Then a and b form a regular sequence and let/ = ax + b.

By the induction hypothesis IA(x) + fA(x)/fA(x) is flat, generated, say, by the

class of a polynomial g in IA(x). Since all the associated primes of / have height

equal to one we have that IA(x) Q (g) + (/)' for every /', thus by the Krull

Intersection theorem [4], IA(x) = (g).
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