
proceedings of the
american mathematical society
Volume 106, Number 3, July 1989

ON THE COHERENCE AND WEAK DIMENSION

OF THE RINGS R(x)  AND R(x)

SARAH GLAZ

(Communicated by Louis J. Ratliff)

Abstract. Let R be a commutative ring. We first derive necessary and suffi-

cient conditions for the rings R{x) and R{x) to be coherent. Next, for stably

coherent rings of finite weak dimension exact relations are found between the

weak dimension of R and that of R(x) and R(x). These relations are used

to determine necessary and sufficient conditions for R(x) and R(x) to be Von

Neumann regular or semihereditary.

1. Introduction

Let R be a commutative ring. R is called a regular ring if every finitely

generated ideal of R has finite projective dimension. This notion, which has

been extensively studied for Noetherian rings, was extended to coherent rings

with a considerable degree of success, [8, 15, 16, 17, 29, 33]. For a coherent

ring R, the regularity condition is closely related to the behaviour of the weak

dimension of modules over R. In particular, a coherent ring of finite weak

dimension is a regular ring, although not every coherent regular ring has finite

weak dimension [15]. The class of coherent regular rings includes several of the

classical non-Noetherian rings, like Von Neumann regular rings and semihered-

itary rings.

Let R be a ring and let S be an R algebra. The type of investigation carried

out in this paper considers the following kind of questions: Under what con-

ditions will the extension R —► S ascend or descend coherence and regularity?

In particular what is the exact relation between the weak dimension of R, and

that of S ; and what necessary and sufficient conditions will ascend and descend

Von Neumann regularity and semihereditarity?
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The algebras S considered in this paper are two well-known localizations of

the polynomial ring in one variable over R, R(x) and R(x). For a polyno-

mial / G R[x], denote by c(f)—the so-called content of f—the ideal of R

generated by the coefficients of /. Let

U = {f G R[x], f is monic}

and

V = {/ G R[x], c(f) = R} = R[x] - \J{mR[x], m G Max(R)}.

U and V are multiplicatively closed subsets of R[x], and R(x) = ic[x],y,

R(x) = R[x]v . Note that R[x] c R(x) c R(x), and R(x) is a localization of

R(x).

The ring R(x) is a very useful ring construction in commutative algebra. As

a faithfully flat extension of R ,'it shares many of the properties of R. In addi-

tion it satisfies several other useful properties, which facilitate proving many re-

sults on R via passage to R(x). Ascent and descent properties of the extension

R —► R(x) have been investigated by a number of authors. In [1], Akiba investi-

gates normality of R(x). In [6], D. D. Anderson, D. F. Anderson and Markanda

(and in [4, 5]) conduct a thorough study of the properties of R(x). Between

other results they touch on conditions related to semihereditarity, namely that

of being a Prüfer ring, a strongly Prüfer ring, and an arithmetical ring. Arnold

[7], Hinkle, Huckaba [18], Huckaba, Papick [20, 21] relate the ring R(x) and

several other ring constructions to Prüfer and Prüfer like conditions of the ring

R and R(x). Ferrand [14], McDonald, Waterhouse [26] investigate projective

modules over R(x). Ratliff [31] studies R(x) with regard to certain chain

conditions.

The ring R(x) received a considerable amount of attention due to its role

in Quillen's solution to Serre's Conjecture [30, 19]; and the non-Noetherian

extensions of this conjecture [10, 23]. Ascent and descent properties of the

extension R —► R(x) have been investigated by a number of authors. In

[6, 20, 21] the authors conduct investigations of R(x) analogous and inter-

twining with the ones of R(x). Brewer, Heinzer [11], determine conditions for

R(x) to be a Hubert ring. Le Riche [24] provides an in-depth study of many

of the properties of R(x). Between other results he determines necessary and

sufficient conditions for R(x) to be a semihereditary ring.

In this paper we first derive necessary and sufficient conditions for R(x) and

R(x) to be coherent rings. This is done in Theorem 1. We next explore the

relations between the weak dimension of R and that of R(x) and R(x). In

Theorem 2, using the notion of non-Noetherian grade, we pinpoint exact rela-

tions between these weak dimensions, provided that R is a stably coherent ring

of finite weak dimension. As corollaries, we determine necessary and sufficient

conditions for R(x) and R(x) to be Von Neumann regular, for R(x) to be

semihereditary; and recapture Le Riche [24] necessary and sufficient conditions

for R(x) to be semihereditary.
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2. Main results

Using a device of Griison, as in [12], we prove the following.

Theorem 1. Let R be a ring and let x be an indeterminate over R, then the

following conditions are equivalent.

(1) R[x] is a coherent ring.

(2) R(x) is a coherent ring.

(3) R(x) is a coherent ring.

Proof. Clearly we need only prove that (3) implies (1). Let T be an arbitrary

set, and consider the exact sequence 0 —► R[x]T —► R(x)T —* cokercp —* 0,

where cf> is the natural map. According to [13], it suffices to show that R[x]

is a flat R[x] module. Let / be a finitely generated ideal of R, then IR(x) n

R[x] = IR[x], therefore R[x] is a pure R submodule of R(x) [32, Theorem

3.44], and thus R[x]T is a pure R submodule of R(x)T. Since R(x) is a

coherent ring R(x)T is a flat R(x) module, therefore both a flat R module

and a flat R[x] module. We conclude by [9, p. 18] that coker</> is a flat R

module. Thus w.dim~ ,coker<j> < 1  [22, Theorem 3, p.  172], and therefore

R[x]T is a flat R[x] module.

Recall that a ring R is called a stably coherent ring, if for every positive

integer zz the polynomial ring in zz variables over R is a coherent ring along

with R. The class of stably coherent rings includes a wide variety of rings.

To name a few: Noetherian rings, Von Neumann regular rings, semihered-

itary rings, coherent rings of global dimension two, and several others, e.g.,

[34, 17]. If R is a stably coherent ring, then R(x) and R(x) are coherent

rings. Theorem 1, proves that if R(x) or (R(x)) is a coherent ring so is R[x].

It is still an open question whether the coherence of R[x] suffices to imply the

stably coherence of R .

We next explore the homological properties of R(x) and R(x) as exhibited

in the behaviour of their weak dimensions. Regularity itself is easily disposed

of as follows.

Proposition 1. Let R be a ring for which R[x]  is a coherent ring, then the

following conditions are equivalent:

( 1 ) R is a regular ring.

(2) R(x) is a regular ring.

(3) R(x) is a regular ring.

Proof. To prove (1) —► (2) use [16, Proposition 2.5]. To prove (3) —► (1) use

[15, Lemma 2].

We will embark on a brief discussion of non-Noetherian grade as defined by

Alfonsi [2, 3], and its relation to the weak dimension for regular coherent rings.
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As a definition of grade for a finitely presented module we will adopt its

equivalent condition [3, Proposition 1.2]. Let R be a ring, let M be a finitely

presented R module, and let N be an R module, then gradeR(M,N) > zz if

there exists a faithfully flat R algebra S, which may be taken to be a polynomial

extension of R, and elements /,,..., fn G (0 :s M<8>RS) which form an N®RS

regular sequence. The largest such integer zz is the grade R(M,N). If no largest

integer zz exists put grade R(M ,N) = oo.

If M is a general R module, then gradeR(M,N) > n if for every y g M,

(0 :R y) contains a finitely generated ideal /   satisfying gradeR(R/Iy ,M)> n .

It is clear that if M is a finitely presented R module and S is a faithfully

flat R algebra then gradeR(M,N) = gradeS(M<8>S,N®S). To show that this

conclusion remains valid for any R module M, we first cite a Lemma proved

in [2, Proposition 1.6].

Lemma 1. Let R be a ring, let N be an R module, and let I and J be two

finitely generated ideals of R, then

( 1 ) If I CJ and gradeR(R/I ,N)>n then gradeR(R/J ,N)>n.

(2) If   gradeR(R/I,N)     >     n    and    gradeR(R/J,N)     >     n    then

gradeR(R/IJ ,N) > n.

Lemma 2. Let R be a ring, let M and N be two R modules, and let S be a

faithfully flat R algebra, then gradeÄ(A/, TV) = grade5(A/ ® S, N ® S).

Proof. Assume that gradeR(M ,N) > n . Let y = J2¡=\ y¡®b¡ G M ® S, and

let / c (0 :R y() be finitely generated ideals satisfying gradeR(R/I ,N) > n.

Then'/ = Y[Iy satisfies gradeR(R/I,N) > n , and thus grades(S/Is',N®S) >

n . But IS c (0 :s y), thus grade5(Af ®S, TV ®S) > n .

Assume that grade5(A/" ® S,N ® S) > n. Let y G M and let / c

(0 :5 y ® 1) = (O :R y)S be a finitely generated ideal of S satisfying

grades(S/I,N®S) > n.

Let J be the finitely generated ideal contained in (0 :R y) satisfying I c JS.

Then gradeR(R/J, N) = grades(S/JS, N ® S) > n, therefore

gradeR(M ,N) > n .

Let (R,m) be a local ring with maximal ideal zzz, and let M be an R

module, the depth of M is defined as: depthÄ M = gradeR(R/m, M).

Let R be a ring, the small finitistic projective dimension of R, is defined as

follows: f. p. dimi? = sup{proj.dim M, M is an R module admitting a resolu-

tion consisting of finitely generated projective JR modules, and

proj.dim M < oo} .

Lemma 3. Let R be a local coherent regular ring then depth R = w. dim R.

Proof. By [3, Corollary 2.7] we have depth R = f. p. dim R . Since R is a coher-

ent ring any finitely presented R module M satisfies w. dim M = proj.dim M
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[28, Lemma 1.2], and admits a resolution consisting of finitely generated free

modules. Since R is a coherent regular ring any finitely generated ideal of

R has finite projective dimension, hence any finitely presented cyclic R mod-

ule has finite projective dimension. It follows by induction on the number of

generators of a finitely presented R module M, that proj.dimAf < oo. We

conclude that f. p. dim /? = w. dim R, and the claim follows.

Lemma 4. Let R be a ring for which R[x] is a coherent ring then

( 1 ) w. dim /? < w. dim R(x) < w. dim R + 1.

(2) w. dim R < w. dim R(x) < w. dim R + 1.

Proof. The left-hand side inequalities follow from the fact that R(x) and R(x)

are faithfully flat R modules [27, Proposition 1.34]. The right-hand side in-

equalities follow from the fact that w.dimR[x] = w.dim/? + 1 [34, Theorem

0.14].

Theorem 2. Let R be a stably coherent ring of w. dim R = n < oo, then

(1) w.dimR(x) = w.dim/?.

(2a) If for every prime ideal p   of R   which is not maximal we have

depth R   < n, then w. dimR(x) = w. dim/?.

(2b) Otherwise w.dimR(x) = w.dim/? + 1.

Proof.
( 1 ) There is a 1:1 correspondence between maximal ideals of R and maxi-

mal ideals of R(x), given by zrz «-► mR(x), and satisfying R(x)mR{x) = Rm(x).

Consider the faithfully flat local homomorphism

(R^mRj'-iÇRJxKmRJx)).

By Lemma 2, depthRm = depthRm(x). By Lemma 3,

w. dim/?   = w. dimR(x).
m mx   '

Taking supremum over all the maximal ideals zrz of /?, on both sides we obtain

w. dim /? = w. dim R(x).

(2)     Note     that     for    every     prime     ideal     p     of     R,      depth

R  =vf. dim /?   < w. dim /? = zz.
p p —
(2a) Assume that depth Rp < n for all nonmaximal ideals p of /?. By

Lemma 4, our claim will be complete if we show that for every maximal ideal

M of R{x) we have w. dimR(x)M < n .

Let M = PR(x), where P is a prime ideal of R[x] not containing a monic

polynomial, then R{x)M = (Rlx^pg,^, = R[x]P .

Let p = P n /?.

If P = pR[x], then R[x]p = R[x]pR[x] = Rp[x]pRp[x] = Rp(x). By (1) we

obtain w. dim R[x]p = w. dim /? (x) = w. dim /?   < zz.

If P 2 pR[x] we have two possibilities. If p is a maximal ideal of /?, then

P contains a monic polynomial and need not be taken into account. If p is not
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a maximal ideal of /?, then Rp[x] = R[x],R_p), thus R[x]p = Rp[x]PR [x],

and v/.dimR[x]p = w.dim/?p[x]PR ,x, < vw.dimRp[x] = w.dimRp + 1 =

depth/?p + 1 < zz.

(2b) Let /? be a nonmaximal ideal of R satisfying depth/? = zz. If zz = 0,

then R is a Von Neumann regular ring, hence every ideal of /? is maximal,

and this case falls in the category of (2a). Thus n > 1 . By Lemma 4, it suffices

to construct a prime ideal Q in R[x] satisfying Q n /? = p , Q contains no

monic polynomial, pR[x] § Q and depth R[x]Q > n + 1 .

Let p § zrz for a maximal ideal m of R and let a G m - p. Set

Q = pR[x] + (ax + l)R[x]. It is clear that Q contains no monic polynomial.

To show that Q is a prime ideal we follow an argument given by Le Riche

[24]. We note that it suffices to show that Q/pR[x] is a prime ideal of

R[x]/pR[x] = R/p[x].

Let F be the field of quotients of R/p , then the image of Q/pR[x] in F[x]

is generated by the irreducible polynomials (a +p)x + (1 +p), and is therefore

a prime ideal. Thus Q/pR[x] is a prime ideal.

To show that QnR = p, let r g QnR. Write r = f(x) + g(x)(ax + 1),

f(x) = bkx + ■■■ + b0, g(x) = ckxk + ■■■ + c0, btG p, 0 < i < k, c,eR,

0 < i < k. We substitute these expressions of f(x) and g(x) in the quality

describing r, and compare coefficients of powers of x on both sides. Since

a ^ p but bi G p, 0 <• i < k we obtain that ct G p, 0 < i < k and thus

r = b0 + cQ G p .

We will now show that depth R[x]Q > n + 1 . Since zz = depth /? =

grade^ (Rp/pRp,Rp) up to a polynomial extension of Rp, we may assume

that there are elements ax, ... ,an G p such that a,, ... ,an G pRp form an

Rn regular sequence. Now R[x]n = Rn[x]n„ m , therefore it suffices to show

that ax, ... ,an, ax + 1 G QRp[x] form an Rp[x]QR [x] regular sequence.

Since ax, ... ,an is an /? regular sequence, it is an R [x] regular sequence,

and as ax, ... ,anG QRp[x], it stays an Rp[x]QR [x] regular sequence.

Now, let (f(x)/g(x))(ax + I) = (fx(x)/g(x))a\ + ■■■ + (fn(x)/g(x))an with

g(x), f(x), f(x) G Rp[x] and g(x) G Rp[x] - QRp[x]. Since /? is a

coherent ring of finite weak dimension, /? , and hence R [x] is a domain

[34, Corollary 5.16], thus

f(x)(ax + 1) = fx(x)ax + ■■■ + fn(x)an. Let f(x) = bkxk + ■■■ + b0,

fx (x) = c[xk + ■ ■ ■ + c'0 with br c'jGRp, 0<j<k, 1 < i < n . Substituting

these expressions of f(x) and f(x) in the above equality, and comparing co-

efficients of powers of x on both sides we obtain that bjG(ax, ... ,an)R for

0 < j < k and thus f(x)/g(x) G (ax, ... ,an)Rp[x]QR [v]. We conclude that

ax, ... ,an, ax + 1 form an Rp[x]QR ,x] regular sequence.

Corollary 1. Let R be a Noetherian regular ring, then w.dimR(x) = w.dim/?.
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Proof. If w. dim /? = oo, by Lemma 4 we are done. Otherwise

w.dim/? = zz < oo. By [25, p. 156], for every prime ideal p of /? we

have depth/? = w. dim/? = gl. dimRp = Krull dim/? = htp . Thus Krull

dim R = n and the only prime ideals p of height n are maximal ideals. By

Theorem 2 (2a) the conclusion follows.

Corollary 2. Let R bearing. The following conditions are equivalent.

( 1 ) /? is a Von Neumann regular ring.

(2) R(x) is a Von Neumann regular ring.

(3) R(x) is a Von Neumann regular ring.

Proof. A ring A is a Von Neumann regular ring if and only if w. dim A = 0.

To show (1) —» (2) use the fact that every ideal of /? is maximal and Theorem

2 (2a). To show (3) —> (1) use Theorem 1 and Lemma 4.

Note that Corollary 2 also easily follows from the fact that /? is a

Von Neumann regular ring if and only if Krull dim /? = 0 and /? is reduced.

Also, since Krull dim/? = 0, here, R(x) = R(x).

Since a ring A is a semisimple ring if and only if A is a Von Neumann

regular Noetherian ring we obtain that /? is a semisimple ring if and only if

R(x) is a semisimple ring if and only if R(x) is a semisimple ring.

Corollary 3. Let R be a ring, the following conditions are equivalent.

(1) /? is a semihereditary ring.

(2) R(x) is a semihereditary ring.

Proof. A ring A is a semihereditary ring if and only if A is a coherent ring of

w. dim/I < 1 [28, Proposition 2.2]. Now use Theorem 2(1) and Lemma 4.

We now recapture Le Riche's results [24].

Corollary 4. Let R bearing. The following conditions are equivalent.

( 1 ) /? is a semihereditary ring of Krull dim /? < 1.

(2) R(x) is a semihereditary ring.

Proof. (1) —► (2). Let p be a nonmaximal ideal of /? ; then p is minimal.

Since R is a domain [34, Corollary 5.16], it is a field, thus depth Rp = 0. By

Theorem 1 and Theorem 2 (2a), R(x) is semihereditary.

(2) —> (1). If R(x) is a semihereditary ring using Lemma 4, and the faith-

ful flatness of R(x) over /? we conclude that /? is a semihereditary ring.

If w.dim/? = 0 then Krull dim/? = 0. If w.dim/? = 1 then w.dim/? =

w.dimR(x) and by Theorem 2 (2), depth/? = 0 for every nonmaximal prime

ideal p of R . Since R is a domain, we conclude that R is a field, and thus

p is minimal and Krull dim/? < 1.
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