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SOME COUNTEREXAMPLES CONCERNING A DIFFERENTIAL

CRITERION FOR FLATNESS

WILLIAM C. BROWN AND SARAH GLAZ

Abstract. Let A denote a commutative ring with identity. We suppose A contains

a field k of characteristic zero. Let Ci[(A) and d: A —> S¡l(A) denote the A -module

of first-order A:-differentials on A and the canonical derivation of A into Q¿(>4)

respectively. If 21 is an ideal of A which is flat as an A -module, then xdy — ydx e

%2Q]l(A) for all xj> in St. We give examples in this paper which show that the

converse of this statement is false. We also show that if 21 is a maximal ideal of a

Noetherian ring A, then xay — ydx e ^¡[(A) for all xy in Si does imply ä is flat.

1. Introduction. Throughout this paper, A will denote a commutative ring with

identity. We shall assume that A contains a field k of characteristic zero. We shall

let C¡l(A) denote the ^4-module of first-order A:-differentials of A. Thus, fi¿04) =

I/I2, where / denotes the kernel of the multiplication map fi: A ®k A —» A which

is given by /i(2 a¡ ®k a'¡) = 2 a¡a¡. We shall let d: A -* Slk(A) denote the canonical

^-derivation on A. If x and v are two elements of A, we set Ad(x,y) = xd(y) —

yd(x). If 21 is an ideal of A, and x,y e 31, then clearly A/x, v) S 2tñ¿(v4). We shall

say that Si satisfies condition (£>) if bd(x, y) G 9I2B¿(^) for all x, y E 31. It is a

well-known fact that if 91 is a flat ideal of A ; i.e. if 31 is a flat A -module, then 91

satisfies condition (£)). A proof of this remark can be found in [4].

In [1], the converse question was explored. That is, when does condition (D)

imply 31 is a flat ideal? In [1], it was shown that if A is a regular local ring

containing a field k, then every ideal 31 in A which satisfies condition (D) is flat. If

A is not regular, then the question of when condition (Z)) implies flatness is much

harder to study. The best result obtained in [1] is as follows: Suppose (A, m, k)

denotes a complete, local domain of dimension one with maximal ideal m and

residue class field k. Suppose A is a monomial ring, i.e. a ring of the form

A = k][ta\ . . ., Ia-]] with k[[t]] being the integral closure of A. Then any ideal 21 in

A satisfying condition (D ) is flat.

In view of the above-mentioned result and other evidence collected in [1], it

seemed reasonable that the following conjecture (made in [1]) was true: Let

(A, m, k) denote a one-dimensional local domain, essentially of finite type over k.

If 31 is an ideal of A which satisfies condition (£>), then 31 is flat. In this paper, we

shall give an example which shows that this conjecture is false. We shall also give

an example of a complete local domain of dimension one which is not monomial

and contains nonflat ideals satisfying condition (£)). We shall show that if A is a
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Noetherian ring which contains k and p a prime ideal of A satisfying condition

(D), then/» must be a regular prime of height less than or equal to one, but/j need

not be flat.

2. Some examples We first give an example which shows that the conjecture

mentioned in the introduction is false.

Example I. Let k be an arbitrary field of characteristic zero, Let A denote the

local ring at the origin of the plane curve Q: Y2 = X2(X + 1) in A2.. Thus, A can

be written in the form A = k[x,y\x y). Here v2 = x2(x + 1), and k[x, y\x<y)

denotes the finitely-generated, integral domain k[x, y] localized at the maximal

ideal (x, v). We set 31 = (x2, xy). We note that 21 is a stable ideal with transversal

x2 (see [3] for definitions). If 21 is flat and, consequently, principal since A is local,

then 2Í = (x2). But then v = Xx for some X G A. This implies A is a regular local

ring which is not the case. Thus, 2Í is not flat. We shall show that 21 satisfies

condition (£>).

If A is any ring containing k, and 21 = (a, b) is any two-generated ideal of A,

then one easily sees that 21 satisfies condition (D) if and only if Ad(a, b) e

2I2fl{(y4). Thus, in our example, we must show Ad(x2, xy) e (x4, x*y)Slk(A). Now

A¿(x2, xy) = x3dy — x^dx. Since x + 1 is a unit in A, x2 = (x + 1)~V2. Also,

v2 = x2 + x3 implies 2ydy = (3x2 + 2x)dx. Making these substitutions in x3dy —

x^ydx, we get Ad(x2, xy) = [2(x + \)]-lx3ydx e 2I2ñ¿(^).   □

If we pass to the completion A oî A in Example I and consider the ideal

2t = 2L4, then 31 satisfies condition (D) but is not flat. A is a complete local ring of

dimension one. If k is algebraically closed, then A is not an integral domain (6 is

not unibranched). On the other hand, if A: is the rational numbers, then A is a

domain. In attempting to get rid of this example by putting more hypotheses on A,

we are led naturally to the following problem: Let the triple (A, m, k) denote a

complete local domain A of Krull dimenson one, with maximal ideal m and residue

class field k. We assume k is an algebraically closed field of characteristic zero

which is contained in A. Suppose 31 is an ideal of A which satisfies condition (D).

Is 3Í flat? The answer to this question is no as our next example will show.

Example II. Let k be any field of characteristic zero. Let t be an indeterminate

over k and consider the formal power-series ring A = k[[t]]. A is a discrete,

rank-one valuation ring with valuation v. A —»Z+ u {0, oo} given by v(t) = 1. Set

hx = t5 - (5/16)i8, h2 = (16/5)^' + (8/5)/14 and h3 = f'6 - (2/ll)i22 + t23. We

now consider the subring A oî A which consists of all power-series (coefficients in

k) in the elements hu h2, h3 and /' for /' > 24. Thus,

A = k[[hv h2, h3, t24, t25, ...]].

Since any semigroup of positive integers is finitely generated, we see that A has the

form A = k[[hy, h2, h3, t24, t25, . . . , /r]] for some r sufficiently large. Thus, A is a

complete local domain of dimension one. The quotient field of A is clearly k((t)):

the quotient field of A; A is the integral closure of A in k((t)) and k is the

residue-class field of A. Set m = (/i,, h2, h3, t24, . . ., tr); m is clearly the maximal
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ideal of A and {A, m, k) forms a triple as discussed above, provided we take A:

algebraically closed.

Let v(A) = {p(x)\x & A] denote the value semigroup of A. We claim that

23 G v(A). To see this, we proceed as follows: If 23 G v(A), then 23 = p(g) for

some g El A. We could then write g = a,A, + a2h2 + a3h3 + aAh2 + a5h\ +

a6hxh2 + a7/i1/i3 + otsh3 + a9h2h2 + al0h4 + yt24 with a„ a2, . . . , a10 G k, and y

G A. A simple arithmetic computation, carefully noting the »'-values of these

summands, shows that this is impossible. Therefore, 23 G "(A).

Now set 31 = (t24, t41) c A. We note that no nonzero multiple x2i of 21 is flat.

For suppose there exists a nonzero element x of A such that x2l is flat. Then

x2l = {xt24, xt41) is principal. Say (xt24, xt41) = (y). The smallest value any ele-

ment in x3l can have is v(x) + 24. Therefore, v(y) = v(x) + 24. But then xt41 = \y

for some À in A implies 23 E v(A). Thus x3l is not flat for any x =£ 0. We shall

complete Example II by arguing that some nonzero multiple x3I of 31 satisfies

condition (D).

Let 3/3/ denote the usual first-order ^-derivation on A given by (3/3/)(/) = 1.

Set M = AdA/dt, the A -submodule — (of A) generated by the image of A under

3/3/. An easy computation shows that (3A,/3/)/i2 — 3/j3/3/ = -23f22. This implies

Va/'24,/4) - '24(3/90((!7) - í47(3/30(í24) G 3l2M.

Now let Ùlk(A) and &k(A) denote the separated completions of &k(A) and ÇLlk(A),

respectively. Thus, Ùlk(A) = Qlk(A)/ (1 ," xm '^lk(A) and Ûl(À~) =

Qlk(A)/ nfLit'Qk(A). It is well known (see e.g. [2, p^9]) that Ûlk(A) at A, and that

the kernel of the natural map from Ûk(A) to Ùlk(A) is a torsion submodule of

Ùk(A). If we let ip: Qk(A) —* A be the natural yl-module homomorphism determined

by the composite map Slk(A) -^> Ûk(A) ̂ > Û[(A) —*A, then the image of \p is

precisely M. The above remarks easily imply that the kernel of \¡/ is given by

ker tiV = {y g Qlk(A)\xy G n", m'QiiA) for some x & A - {0}}. Since

Aa/3,(/24, /47) G 2l2Af, we conclude that there exists a y, G 2t2ñ[(^) and y2 G ker if>

such that Ad(t24, t41) = y, + y2. Since y2 G ker \¡/, there exists an x G ^4 — {0}

such that xy2 G D °°-1 m'ük(A). Then x^ ED,", w'ß|(^). Since ^ has Krull

dimension one, m' c (x2I)2 for some / sufficiently large. Thus, x2y2 G (x2l)2Q|(^).

Since Ad(xt24, xt47) = x^i/24, t41) = x^y, + x^z G (x%)2ü[(A), we conclude that

x2t satisfies condition (D). Since x3l is not flat, Example II is now complete.    □

In light of Example II given here, it is now clear that the positive result for

monomial rings mentioned in the introduction to this paper is about as good as one

could hope to get.

3. Primes In Noetherian rings. We begin by showing that maximal ideals which

satisfy condition (D) must be flat.

Theorem. Let A denote a Noetherian ring which contains a field k of characteristic

zero. Let m be a maximal ideal of A. If m satisfies condition (D), then m is flat.

Proof. Let Am denote the w-adic completion of the local ring Am. Since misa

maximal ideal of A, m is flat if and only if mAm is a flat Am-module. The complete

local ring Am is of equal characteristic and, consequently, contains a copy L of its



508 W. C. BROWN AND SARAH GLAZ

residue-class field. Since the characteristic of k is zero, we can assume L contains k.

One easily checks that mAm satisfies condition (£>) in Am. Since Lok, mAm

satisfies condition (D) with k replaced by L. Thus, by replacing A by Am, m by

mAm, and k by L, we have reduced the theorem to the following claim: Let A be a

complete local ring containing a field k of characteristic zero. Suppose m is the

maximal ideal of A, and A/m = k. Then, if m satisfies condition (D), m is flat.

If A is a regular local ring, then the claim follows from [1, Theorem 1.1]. So we

can assume A is not regular. In this case, we shall argue that m cannot satisfy

condition (/)). This contradiction will complete the proof of the claim.

So assume A is not a regular local ring. We first claim that A can be written in

the form A = k[[Yx, . . ., y„]]/3I with 31 c (7„ . . ., Yn)2. Here k[[Yx, ..., Yn)]

denotes the formal power-series ring over k in indeterminates Y{, . . ., Yn. To see

this, we first note that since A is a complete local ring of equal characteristic, A can

be written in the form A = k[[Xx,... , XN]]/I. Here Xv . . . , XN are inde-

terminates, and / is some ideal contained in M = (Xx,.. ., XN). Let / =

(/i> • • • yf)- If f¡^- M2 for all i: = 1, . . ., s, then there is nothing to prove. So, we

can assume there exists an integer g such that 1 < g < s, {/,, .. . ,fg} c M — M2

and {fg+i, . . . ,fs) C M2. Since, /,ëM- A^2,/i is part of a regular system of

parameters for R = k[[Xv ..., XN]]. If f2 G M\R/(fx)), then f2 = Fx + zfx for

some z G R, and F, G M2. If this is the case, we can write / =

U»f» ■ ■ ■,/,, *i>/,+i. • • • »/,) with/„/3, . . . ,fg G M - M2, and F„fg+X, ...,fs
G M2, if/2 G M\R/(fx)), then {/p/;,} is part of a regular system of parameters

of R. Continuing this procedure, we see that we can rewrite / as / =

(Si> • • •, 8n-„, Fv-, Fs+n_N)with {gj, . . . , gN_H} part of a regular system of

parameters of R, and {F,, . . . , Fs+n_N} c Af2. Now suppose

{#i, • • • > gy-„> &V-H + 1. • • •, &v} is a regular system of parameters of R. Then

* = k[[gl, ..., g„]]. Thus, yl = R/I = k[[gN_„+l, ..., g„]]/3l where 21 is the

image of (Fv ..., Fs+n_N) in k[[gN_n+l, ..., gN]]. Setting Y¡ = gN_n+i, for / =

1, . . ., n gives the required result.

For future reference, let v, = Y¡ + 31. Then A = k[[yv .. . ,y„]], and m =

(vj, . . . ,y„) is the maximal ideal of A. Let us relabel the generators of 3t as

31 = (A„ . . ., hr). Then {Ä„ ..., hl} cz(Yv ..., y„)2. Let 0¿(¿) denote the sep-

arated completion of tik(A). Thus, Ü^A) = tilk(A)/ D," 1/M,'ñ¿(y<). Let x: ßi(-4) -♦

S2¿(/1) denote the natural projection and set ¿ = x ° d. Then d is a ^-derivation of

A into a¿04). It is well known that &l(A) = 2"_ xAd(y¡). In particular, there exists

a surjective /4-module homorphism 9: A" -±Qk(A) given by 0(av . . . , a„) =

27_!a,i/( v,). The kernel of the map 6 is easily seen to be given by ker 9 = '2ri_lAXi

where \ = ((3A(./3y,)-, . . . , (3A,./3y„D for / = 1, . . ., r. Here QhJdYj)- denotes

the image of 3A,/3 Yy in A.

Now let Aj(ö, a') = ad(a') — a'd(a) for a, a' G /w. Since m satisfies condition

(D), àd(a, a') G m2Ûk(A) for all a, a' G m. In particular, A¿(v,, vj G

(v„ . . ., v„)2ß{(yl). Thus, A¿(v„ va) = 27,,.,^/úy for some w„ G «¿(^1). Write

each u}¡j as w^ = ^".^„¿/(v,) with ö,^ E ^4. Substituting these expressions into
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Aj(v,, v2) gives us the following equation in Ù\(A):

Í-J*2 -   2  «biWÎIWH) + í^i -   Ë ôIJZy,yjmy.)

-22 s¿y*Ay¿ = °- 0)
<-3 f,/-i

Equation (1) implies that the n-tuple

(ti n n n \

-y»-   2  ^yiW/»^-   2  âtJiyyp-   2   fysJVy» • • •, -   2  âiJnyy\
i,j-l i,j=i 1.7=1 ij—l I

lies in the kernel of 9. In particular, there exist elements iu ..., zr £ A such that

the following equations are satisfied:

-.V2 - 2 *wy&j ■ 2 *,( jy-\, ^i-2 BíaWj = 2 M ay") •  (2)

Pulling these equations back to k[[ Yv . . ., Yn]] gives

" r     I 3A  \
-y2 -121 %i y, 15 - 2 -»(-^] e (*„.... Ar),

" r     / 3A \

(3)

In relation (3), aiJV aiJ2 and zr are preimages in k[[Yx, . . ., Yn]] of a,71, aiy2 and z„

respectively. Each A, appearing in relation (3) lies in (y„ . .., Yn)2. So, we can

write A,. = S^.^^.y^y, + ft for / = 1, . . . , /•. Here, t^,, ,. E k, and /x,. £

(y,, . . . , y„)3 for all ^, f? and i. If we substitute these expressions for the A, in

relation (3) and simplify, we readily see (3) is impossible. Hence, m cannot satisfy

condition (D), and the proof of the theorem is now complete.   □

Corollary. Let A denote a Noetherian ring which contains a field k of character-

istic zero. Let p denote aprime ideal of A which satisfies condition (Z>). Then the local

ring Ap is regular, and p has height less than or equal to one.

Proof. The same proof as in the theorem implies that A is a regular local ring

with pAp flat over Ap. Thus, the dimension of Ap is at most one. Therefore, Ap is

regular, and height (p) < 1.    □

In the corollary, we can conclude that pAp is flat. Thus, pAp is also flat over Ap.

However, since p may not be maximal, we cannot conclude that p itself is flat. In

fact, p may not be flat as our concluding example shows.

Example III. Let k be any field of characteristic zero, and let X, Y, Z and T be

indeterminates over k. Let 31 be the ideal in k[X, Y, Z, T] which is generated by

X2, Y2, XY, TY - ZX and X(T - 1). Let A = k[X, Y, Z, r]/3t and as usual let

x, v, z and / denote the residues of X, Y, Z and T, respectively, in A. One easily

checks that p = (x,y) is a prime ideal nilpotent of index two in A. Clearly

Afp m k\Z, 71.
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We first claim that/; satisfies condition (D). To see this, let d: A —» ß}(.4) denote

the canonical derivation. Since/?2 = 0,p satisfies (D) if and only if xdy — ydx = 0

in &lk(A). Now tllk(A) is spanned as an ,4-module by dx, dy, dz and dt. We,

therefore, have a surjective map 9: A4 —* £lk(A) given by 9(av a2, a3, a4) = axdx +

a2dy + a3dz + a4dt. From the relations on A, we see that the kernel K of 9

contains the four-tuples (x, 0, 0, 0), (0, y, 0, 0), (y, x, 0, 0), (-z, /, -x, y) and (/ —

1, 0, 0, x). Now (-y, x, 0, 0) = (/ - l)(y, x, 0, 0) + x(-z, /, -x,y) in A4. Thus,

(-y, x, 0, 0) E K. So, xi/y — ydx = 0, and/7 satisfies condition (Z>).

We next claim that p is not a flat A -module. If p was flat over A, then

p <8>A p ssp2 = 0. In particular, x ®^ x = 0 in p ®A p. We can now apply the

usual Bourbaki lemma (e.g. see [5, p. 142]) and conclude that there exist

bu, bl2, b2V b22 G A such that the following equations are satisfied:

(i)    bux + b2xy = 0, (iii)    Anx + bX2y = x,

(ii)   ¿>12x + b22y = 0, (iv)    b21x + b22y = 0.

Now equations (i) and (iii) in (4) imply that x = cy for some c G A. Pulling back

to k[X, Y, Z, T], we see this is impossible. Hence,/» satisfies condition (£>), but is

not flat over A.   □
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