MATCHINGS ON RANDOM REGULAR HYPERGRAPHS

ZHONGYANG LI

ABSTRACT. We prove the convergence in probability of free energy for matchings on ran-
dom regular, uniform hypergraphs and explicitly compute the limit. We also obtain a
region on parameters where replica symmetry holds.

1. INTRODUCTION

Counting the number of matchings on a graph has been an interesting problem to scientists
dating back to at least 1960s (see [9, 16, 17]). Unlike perfect matchings, the number of which
on a graph can be computed explicitly by a determinant formula (see [19, 24, 21]), counting
the number of matchings (or monomer dimers) on a graph is complicated in general (see
[18]); and algorithms are designed for that purpose ([20, 10]).

In this paper, we study the free energy of matchings on random, uniform hypergraphs.
Let d, be positive integers such that [ > 2 and d > 2. A hypergraph G = (V, E, H) consists
of a collection H of labeled half-edges, a set E of hyperedges such that each hyperedge e € E
consists of [ distinct half-edges, and a set V' of vertices in which each vertex is represented
by d distinct half-edges incident to it. Here each half edge is part of a unique hyperedge
and is incident to a unique vertex. However, it is allowed that two distinct half edges are
incident to the same vertex and part of the same hyperedge. We call such a hypergraph a
(d,l)-regular hypergraph.

A subset M C E is a matching of G = (V, E, H) if for any two hyperedges e1,ea € M,
let fi,..., f; be half edges in e; and g1, ..., g; be half edges in es, then no two half edges in
{fi,--, fi,01,--.,91} share a vertex.

Let m be a positive integer, and assume that Im is an integer multiple of d. We may
consider a (d,[)-regular hypergraph with hyperedge set [m] = {1,2,...,m} as a division on
the set [lm] of labeled half-edges into disjoint size-d subsets, where half-edge i is part of the
edge [ﬂ, and each size-d subset of half-edges represent a vertex. Then the total number of
(d,l)-regular hypergraphs with hyperedge set [m] is

Br—1g-1 (Im)!
(1.1) IT Tk +id) = ———
j=0 k=1 da ()

When [, d are fixed and let m — oo, by Stirling’s formula we obtain
OV <lm>

1

lm(d—1)
d

(im)!
77 ()
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Let Q,, 4; consists of all the (d, [)-regular hypergraphs with m hyperedges. A random (d, [)-
regular graph G,;, 4; € {1, ¢ is a random graph uniformly distributed in €,, 4;.

We shall apply the first and second moments method; and find a region for parameters
when the exponential growth rate of the second moment is twice of that of the first moment.
Similar approach was used to determine the asymptotic independence number for the dense
Erdés-Rényi random graph ([14]); and to show the existence and non-existence of perfect
matchings on hypergraphs ([5]). The major difference between a matching problem and a
perfect matching problem lies in the fact that in the matching problem, we need to find the
global maximizer for a function of two real variables, in contrast to the case that in a perfect
matching problem, the global maximizer of a single variable function is studied. When the
second moment is approximately the square of the first moment, we use a generalized version
of the subgraph conditioning technique to show the convergence in probability of the free
energy. The subgraph conditioning method was first used to study Hamiltonian cycles on
a random graph (see [23]); the major difference here is that we prove that the asymptotic
Poisson distribution of the number of cycles on a random graph conditional on the existence
of a specific matching.

Note that when [ = 2, the model is the same as monomer dimers on a random graph,
whose free energy was computed in [1] and the convergence of the density of maximal
matching was proved in [8, 4] using the technique of weak convergence (see [2, 6]). When
d = 2, the model is the same as the independent set model on a random graph, of which the
fluctuations of the maximum were studied in [7] when [ is sufficiently large. Free energies of
vertex models on a graph with more general constraints were computed in [22, 13, 11, 12].

Here are the main results of the paper.

Theorem 1.1. (1) Let By« be the unique root of
(1.2) (1-dp)' = p(1-p)""

m (0, é) Let Z be the total number of matchings on a random d,l-reqular graph
GOm,a,i- Then when m is sufficiently large

lim e m*BIEZ = v1-p.
m=—00 VI+(d—d-1)B.

(2) Let

(1.3)  Ly: = mm{dz_d—HQ’ (d—l)(l—1)+1}

(1.4)

~
I\
I

i d L1 [ 41 dl+1*—-2l—d+1 1
d arT—1)7 2P —d 7\ /[d-1)(1—-1)+1
and

(15)  @q(B) = AP+ (111~ F)In(l—6) — (1 —df)In(1 - dp)

Assume | > 2, d > 2 satisfy one of the following conditions
(a) l =2 and § € (0, é); or
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(b) d >3, 1> 2 such that ®;,(L1) < 0.
Then as m — 00,

1
—log Z — ®q,(Bx)
m

in probability.
(3) Let

3

(1.6) Z(x) = Zpa",
k=0

where Zy, is the total number of matchings on Gy, 41 with exactly k present hyperedges.
Assume | > 2, d > 2 satisfy one of the following conditions:

(a) 1 =2, and § € (0, é); or

(b) d >3, 1> 2, such that ®;,(L1) + In(x) < 0; or

(¢c) d>3,1>2, such that ¥} ,(L2) + In(x) < 0.

Then as m — oo

1
—log Z(z) — ©4.(Bx(2)) + Bx(2) In(z).
in probability.
Theorem 1.1(2) has the following applications.

Example 1.2. [t is straight forward to check that when
(d,1) € {(2,3).(2,4),(2,5),(3,3), (4,3)},

when have (I)fi,l(Ll) < 0. Then the free energy of matchings on G, 41 converges in probability
to ®41(B«) as m — oo.

The organization of the paper is as follows. In Section 2, we compute the first moment of
the total number of matchings of a given density, and the first moment of the totoal number
of all matchings on G, 4;. In section 3, we compute the second moment of matchings with
a given density and find explicit conditions under which the second moment and the square
of the first moment have the same exponential growth rate. In section 4, we show that
conditional on a matching , the distributions of the number of cycles of different lengths
on G, 4, converge to independent Poisson random variables as m — oo. In Section 5, we
show the convergence in probability of the free energy to an explicit limit. In Section 6, we
show the convergence in probability of the weighted energy to an explicit limit when each
hyperedge in the matching is given a sufficiently small weight x > 0 and prove Theorem
1.1(3b). In Seciton 7, we prove Theorem 1.1(3c). In Section 8, we discuss the implications
of our results on maximal matchings.

2. FIRsST MOMENT

Let 8 € (0,1). Let Z,,3 be the total number of matchings consisting of m/ hyperedges
on a random (d,l)-regular graph G, ¢;. In this section, we compute the first moment of
EZ,,3 and the first moment of Z, the totoal number of matchings on G, 4;.
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Note that if 5 > %1 then Z,,3 = 0. Now assume

(2.1) Be <0, 2) .
Then
m\ T im(1 - B) — (d — 1)i — j
22)  Bimp = (m6> HO 11) (lmﬁ—)l —(di—} :
m! (Im(1 = B))! (Im(1 —dp))! d™P ()

(mB)(m(1 =B (Im(1 —dB))!  (Im)!  (Z(1—dp))!

Fix d, 8,1, and let m — oo, by Stirling’s formula we obtain

(2.3) EZ,.5 < m~zem®ai(d)
where ®4; is defined by (1.5).
Hence
(2.4) &71(5) =—Infg—-(I—-1)In(l-75)+1ln(1—-dp)
" _ i_ld_dﬁ_(l_l) . 1

Then we have

Lemma 2.1. (1) MaXge (o 1) Q41(8) = Pai(Bs), where By is given by (1.2).
vd

@ (-1D(d-1), (d_1>11 (1> =4
d "\ g d"\da) "~ l<d)20

®4:(B) >0 for all € (O, é)
(3) If f (%) < 0, let By be the unique number in (5*, é) such that

®q:(Bo) = 0.

Then
(a) Ifﬁ S (0,50), then (I)dJ(ﬁ) > 0.
(b) I B € (Bo, 1), then Bqu(B) < 0.

Proof. From (2.4) we obtain

lim &’ = 400; lim @ = —o0.

Bi>0+ d,l(ﬁ) o d,l(/B)

By (2.5), the equation @} ,(8) = 0 has exactly one root in 3, € (0, %) satisfying(1.2).
1

»d

From (2.5) we see ®/;, is monotone decreasing in (0, 5), therefore

e when § € (0, 8s), ®/,, > 0, and ®4;(5) is monotone increasing;
e when 8 € (5*, é), P, <0, and ®4,(B) is monotone decreasing.
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Then Part (1) of the lemma follows. Moreover,

f @ ,8 — IIl.Il 1.111 (D ﬁ ) 1'111 Id /6
By (1.5) we obtain

lim & 0;
B— H{JIJF d l(ﬂ)

and

B e RIOIT)

Then it is stralghtforward to check Part (2) and (3) of the lemma.

Lemma 2.2. Let n € N. Then
(2.6) 2mn (ﬁ) ¢TI <n!<vV2 ( ) et

e
Moreover,

Vo e <nl<e e ™
Proof. See Exercise 3.1.9 of [15].
Lemma 2.3. Let 8 € (0, é) Then

1
lim ey o -
Az, V™ " /2B — dB)

The convergence is uniform in any compact subset of (0, é)
Proof. Let h € [1," — 1] be a positive integer. By (2.2) and (2.6), we obtain

B( )€m<bdl(£) A( )em’l)d,l(%) ‘

h h d
wmwm 2) ¢zmm (1-2)
where
1 1 1 1 1 d d
A(m, h) = el2m + 12l(m—h) 12h+1 12(m—h)+1 12mi+1 tiomi 121(m—hd)+d
1 1 1 d
B(m’ h) = el2m+1 + 12l(m—h)+1 _m_ 12(m—h) 12l'm + 12l’m+d T 12i(m—hd)

Then the lemma follows.

Proof of Theorem 1.1(1). Note that
Zp=1

ol (M !

Coma [ Im
75y (a0 <l;>!) ()
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We have
B (m, ) Viena (1) <BZy < A (m, ") Vien o),
where
A (m’ %) — 6ﬁ+12lmc(ld—l) B 12Tz+d7 12m(ddfl)+d7 12171n+1+ﬁ
B (m’ %) — 6127’7‘1L+1+12lm(571)+d7ﬁ7IQm?d71>7ﬁ+%
Then by (2.7)
z o1 h
d d m[®q(L)—®4.(8:)] 1
(2.8) EZ = EZ;, = ¢MPa(Be) € <1 +0 ())
h=0 h=1 2hm (1 — 4) m

Let K > 1 be a positive integer. We shall divide the sum over h in the right hand side of
(2.8) into two parts

(1) Part I is the sum over h When 2L isin a \/E nelghborhood of Bu.
(2) Part II is the sum over h when % is outside the ﬁ neighborhood of 3,.

More precisely, let

m K
=<heN:1<h<— " —
o= {remsnsfrfionl< 5}
then
il em[¢d,l(%)—¢d,l(ﬂ*)]
=141
h=1 2hm ( Cfrff)
where
m[®q(L)—Dg(84)] m[®q (L) =P, (Bs)]
1=y ¢ L Il= < .
heQ 2hm ( dh) 1<h<™ —1h¢Q 2hm ( dh)

Taylor expansion of ®4;(-) gives us

(I)// 8 2 3
Qg <Z) —®g(8s) = d’lQ(B) (:2 - 5*> +0 (:L - ﬂ*)

Hence we have

K2( 4 ld—dBs—(— 1)) ) )
[I<e 2 \8 (-8:)0-dBs)/ . convergent geometric series — 0,

as K — oo. Moreover

ld—dBx—(1-1) \ 2
Bt iAo dﬁ*))
2 dx

lim lim 7

1
K500 m—+00 2B (1 — dps) /—oo

_ 1 - B
T\ Trd—d-0B
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Then the lemma follows. O

3. SECOND MOMENT

In this section, we compute the second moment of Z,,5 and find explicit conditions under
which EZglﬁ and (EZ,,5)? have the same exponential growth rate.
We can also compute the second moment of Z,,3 as follows

(1) A double matching configuration is the union of two matchings on the same graph.
Consider Z?nﬁ as the partition function of double matching configurations on a ran-
dom graph, in which each matching consists of exactly mf edges.

(2) In each double matching configuration M; U My on a random graph of m edges
such that each matching consists of exactly mf edges; all the hyperedges in [m] are
divided into 4 types by the configuration

(a) Type (a) hyperedges are in Mj N My; assume there are s Type (a) edges, where
0 < s <mp. The s Type (a) edges splits into s half edges, each one of which
can not share a vertex with any half edge in My U Ms. A half edge is of Type
(a) if and only if it is part of a Type (a) hyperedge. The total number of Type
(a) half-edges is Is.

(b) Type (b) hyperedges are in M; N Ms; the total number of Type (b) edges is
mpB —s. The (mfB —s) Type (b) edges splits into I(mfS — s) half edges, each one
of which cannot share a vertex with any half edge in M;. A half edge is of Type
(b) if and only if it is part of a Type (b) edge. The total number of Type (b)
half edges is ImfB — [s. Depending on whether they share a vertex with a half
edge in My N My, Type (b) half edges can be further divided into 2 sub-types:

(i) Each Type (bi) half edge does not share a vertex with any edge in My UMj.
The total number of Type (bi) half edges is Imf — ls — t.

(ii) Each Type (bii) half edge shares a vertex with exactly one half-edge in
Ms N M¢. The total number of Type (bii) half edges is ¢..

(c) Type (c) hyperedges are in M{ N Ma; the total number of Type (c) edges is
mpB — s. The (mf — s) Type (c) edges splits into [(mfS — s) half edges, each one
of which cannot share a vertex with any half edge in M. A half edge is of Type
(c) if and only if it is part of a Type (c) edge. The total number of Type (c)
half edges is Imf — [s. Depending on whether they share a vertex with a half
edge in M; N Mg, Type (c) half edges can be further divided into 2 sub-types:

(i) Each Type (ci) half edge does not share a vertex with any edge in M;UMj.
The total number of Type (ci) half edges is Imfg — Is — t.

(ii) Each Type (cii) half edge shares a vertex with exactly one half-edge in
My N My. The total number of Type (cii) half edges is ¢.

(d) Type (d) edges are in M{ N Ms; the total number of Type (d) edges is m —
2mp + s. A half edge is of Type (d) if and only if it is part of a Type (d) edge.
The total number of Type (d) half-edges is [(m — 2mf + s).
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Let
(3.1) pi=— 0 :=—.

It is straight forward to check the following lemma

Lemma 3.1.

(3.2) pel0.8; 00,081

Lemma 3.2.

(3.3) <2B—p—?>d§ 1.

Proof. 1t suffices to show that
(Im(28 — p) —Om)d < Im

Note that Im is the total number of half edges in the graph G, 4;; Im(28 — p) — 20m is
the total number of half edges of Type (a) (bi) and (ci); any two of these half edges cannot
share a vertex; hence the total number of half edges sharing a vertex with these half edges
is

(3.4) (Im(28 — p) — 20m)d

The total number of Type (bii) and (cii) half edges is 2¢; these half edges are incident to
exactly t vertices, and the total number of half edges incident to these t vertices is

(3.5) Omd

There are no common half edges in (3.4) and (3.5), therefore their sum is at most mi-the
total number of half edges in the graph G,, 4;. Then the lemma follows. U

By (3.3), we obtain

thax{O,leB—ls— l?;}

Let K, g s+ be the total number of possible half edge assignments for the first (2lmpg —Is—t)

vertices. Then
2lmpB—ls—t—1d—2

Kmpst = II  JJtm-1-di—j)
i=0 =0

(Im)! (I —2imB + 1s + t)!
(Im —d(2lmpB —ls —t))!  g2lmpB—ls—t (%m)!
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Mm

d—2 [ls—1
EZ.; = )(mﬁ—s)(TnﬂTf)H lHl(m—Qmﬁ—&—s)—(d—l)i—j]
5=0 =0 Li=0
l7nB ls 2
(lmﬁt— ls) (d— 1)t
t= max{O 2lm,3 ls— }
lmﬂ ls t—1
m(l—28)+1ls—(d—1)(2s+ k) —j
k 0
ImpB—ls—t—1
X [ [T im-28)+1is—(d—1)(imB—t+h) —j”
h=0

t—1d-3 1
X{H HQm—d(leﬁ—ls—2t—|—w)—(2t—2w)—r}K

w=0 r=0 m,B,s,t
mp ImpB—ls

(3.6) = Y > Fy(s,t).

s=0 t:max{O,leﬁfls—%”}

m!(d —1)* [(ImB — 1s)]?
slimp — s)i(mpB — s)l(m — 2mpB + s)! 1 (ImpB — ls — t)!]?
[((m —2mpB + s)]!  d2mB-ls=t (lm))

(3.7) Fa(s,t) =

(im)! (I —2impB +1s +t)!
Now we assume
(3.8) p € (0, B);
(3.9) 0 € (0,18 —lp).

When m — oo, by Stirling’s formula we obtain
Fsz(pm,fm) < m~2emYai(8,p.0)
where

(3.10)  Way(B,p,0) = —plnp—0111§+(l—1)(1—25+p)1n(1—25+p)+91n(d—1)

s -1 o) -2 (57 ) (5-5-7)

_é (1—2ﬂd+pd+?d) In <1—25d+pd+?d)
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Then we have for all g € (O, é)

ov 0
d’léi’p’) = —Inp+(-1)In(1-28+p)—2(1—-1)In(3 - p)
+2lln(ﬁ—p—?)—lln(l—2ﬁd+pd—|—9ld)
QatBop0) — ¥ 4o ﬂ—p—g —In 1—2ﬁd+pd+% +1In(d — 1)
o0 l I I
and
82\I/d l(ﬁ,p, 9) 1 -1 2(l - 1) 21 ld
3.11 _ L = —— + + _ _
o1 Op? p 1=28+p B-p B-p-F 1-28d+pd+ 7
2 2 d
(3.12) M = _1_ l - — 1 9d<0
96? 0 B—p—% 1-28d+pd+ %
Pvaibp0) _ 2 d
060p - B-p—§ 1-28d+pd+ %

Now we solve the following system of equations

6\1’[(1’[(67[)70) _ 0

F) =Y
(313) {6\1111’[@7[),9) _ 0

00 -
and obtain

AN od

0 l

(3.15) pla- 145 -9 = () =284
It is straightforward to check that
(3.16) p=p3%  0=Id-1)p%

is a pair of solutions for (3.14) and (3.15).
Lemma 3.3. Assume (2.1),(3.8) (3.9) hold. Assume d > 2. For each 8 € (0,3), let

(3.17) Rg:= {(p, 0):p€(0,8),0¢c <max {0, 218 —lp — ﬁl} AP — lp) } ,
Then for any (p,0) € Rg,
82‘I’d,l(57P79>

3.18 <0.
(3.18) 0,2
Proof. Note that § < % by (3.9) when 0 < 8 < 4. By (3.9), (3.3), we obtain
I-1 ld o ld-1)+ 2D (1 28d + pd)
1-28+p 1-28d+pd+% —  (1-28+p)(1—28d+pd+ %)

—1(d—2) — (1 —28d + pd + )
(1—28+p) (1 —28d + pd + %4)
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Moreover,

Then (3.18) follows from (3.11). O

Define the Hessian matrix

82\1}d,l(ﬁ7p10) 82\1’d,l(ﬂ7p70)
- p? 060
H(/B’ p’ 0) T < 82\I’d,lp(ﬁupa0) 82\Ild,l(5pzp’0) )

900p 962
Lemma 3.4. Assume (2.1),(5.8) (3.9) hold.
(1) If
(3.19) 1<d
Then (3.16) is a local mazimizer of Wq,(5,p,0) when (p,0) € Rg for every B €
(0, 3);
(2) If
(3.20) B < = \/m

then (3.16) is a local mazimizer of Wq,(B, p,0) when (p,0) € Rg.

Proof. Since (3.16) satisfies (3.13), it suffice to show that H(f,3%,1(d — 1)3?) is negative
definite when (3.19) holds. By (3.18), (3.12),it suffices to show that
(3.21) det H(B,52,1(d — 1)5%) > 0.
when (3.19) holds. Note that
H(B, 82,1(d — 1)3?)
_i+l—1+(l—1_21_m 2 d
— gz ' (1-pB)? 52(1*/3) B&lfdﬂ) (1-Bd)* ) B(1—dp) ) (1-dp)? J ,
- B(1-dp)  (1-dp)? S l(d-1)p2 - 1B(1-df)  U(1-Bd)?

and therefore

2d -2 2] - B2dl+1
(3.22) ek (5. 5°, 1~ D) = {5

Hence (3.21) holds if and only if
g(B) == B3 d+1—dl)—28+1>0.
Note that when d > 2,1 > 2, d+ [ — dl < 0, and the identity holds if and only if d = [ = 2.

e When d =1=2,1— 28>0 given that 8 € (0, 3).
e When d > 2, ] > 2, and at least one of d and [ is strictly greater than 2, g(8) > 0
for all 8 € (O, é) if and only if g (é) > 0. This gives [ < d.

O
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Lemma 3.5. Assume (2.1),(3.8) (3.9) hold. If 1 =2, then for each 8 € (0, %), the Hessian
matriz H(B3, p,0) is negative definite for all (p,0) € Rg.

Proof. Again by (3.12) (3.18) it suffices to show that det H > 0 when [ = 2. Let

e e
' p 1=28+p B—p’
2 d
B: = - — <0
B—p—5 1-28d+pd+%
1
c: = —§<O.
1 1
U: = ——4+—— <0
p T1o281, Y
Then
Note that
2 2
AC =CU — > —
0(B—p) — 0(B—0)
and
A BU 1 2
B|—+2 = —+B(— —=
(2r2) = T oo (5 0)
BU 4 d 1 2
= 5 Tt 0d )
2 (B—p)0 1-28d+pd+% ) \B—p 0
S
— (B=p)
where the last inequality follows from (3.9). Hence we have det H > 0, and the lemma
follows. O

Lemma 3.6. Assume (2.1),(3.8) (3.9) hold. Let 1> 3. For each B € (0, 5], the set
Rp N {(p,0) : det H(B, p,0) > 0}

has at most one connected component in the (p,8)-plane.

Proof. For simplicity let
n:i= 7
For each fixed § € (0, é), explicit computations show that det H(S, p,Iin) = 0 if and only if

21— Ba)(3+p— 268° — pl(1— B)) _
- D) ) e

n=(8-p) <1
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where
D(p) =B+ p—2lp—dp* —1p* —28% — Bdp + 3Blp + 28%dp + dip* + Bdlp — 26%dlp
Then for each fixed (d, 1, 3) such that § € (0, é), the equation

§p)=6B-p
has at most one solution in (0, ) given by
_ B —-2p)
Moreover,
F
(3.24) g(p) =1+
where

F(p) = 2(Bd—1)*(l—=1) [(2U1 —B)* — 1) p* = 28(1 — 28)p — B*(1 — 28)°]

The equation

¢(p)=-1
has a unique positive solution given by
1-2
(3.25) p3 = —ﬁ( IB)
V2(1-8)-1

Moreover, when p < p3, F(p) < 0 and when p > ps3, F(p) > 0. Note that
(3.26D(p) = (dl — I — d)p? + (381 — Bd — 21 + 23%d + Bdl — 26%dl + 1)p — 262 + 6.
Hence

D) = p(1—-28)>0.

D(B) = 26(1-pd)(B-1)(1-1)<0.

Let p1 be the unique point in (0, 3) such that D(p;) = 0.
When 8d < % we have

Rs={(p.0): p€ (0,8),0 € (0,18—1p)},

then
J
n=60) = (- )0
where
(3.271V(p) = (dl —1—d)p?* + (Bd + Bl +26%d — Bdl — 1)p + 232%d — B — 45%d + 2°

— —p(dl =1~ d)(8 — p) — p(1 — 28%d) — B(1 — 28)(1 — 28d) < 0
where the identity holds if and only if p = 0 and £d = %
J(B) = 2B(1—-pd)(f—-1)<0
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F1GURE 3.1. The curve det H = 0 is represented by blue lines. When g €
(0, %], Rp is represented by the triangular region in the (p,6) plane with
vertices (5,0), (0,0) and (0,3). The curve det H = 0 intersects the line
p+n = [ at a unique point (ps,5 — p5). The curve det H = 0 divide
the triangular region into two connected components - the left component
satisfies det H > 0 and the right component satisfies det H < 0.

The when p € (0, 3), the curve n = £(p) has two components:

e When p € (0, p1), £(p) <0 and lim,,,,— £(p) = —o0.

e When p € (p1,p), {(p) > 0, lim,—,,, 4+ £(p) = oo and % =75 <1lwhen!>3

Hence when p € (0, p1), the curve 6 = I{(p) does not intersect Rg. When p € (p1,p), the
curve § = [£(p) divide the triangular region R into two connected components, exactly one
of them satisfy det H > 0. It is straightforward to check that the component on the right
(resp. left) satisfies det H < 0 (resp. det H > 0) given that D(p) < 0 for p € (ps,3); see
Figure 3.1. U

Lemma 3.7. Assume (2.1),(3.8) (3.9) hold. Let 1> 3. For each B € (55, %), the set
RN {(p,0) : det H(B, p,0) > 0}
has at most two connected components in the (p,0)-plane.

Proof. If 1 > Bd > %, then

Rpg: = {(p,G):pE (0,25—;) ,0 € (2Bl—pl—fl,l/8—lp>}
{0 pe (2= 1) e 0is-10),



and
(3.28)

Moreover
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0<J(0) = —=B(1 - 28)(1 - 26d)

(5—0)5((%))25(2661—1)<2ﬁ_61l

< 0.

1 I(d—1)(26d—1)(Bd —1
7 (29 1) - M= DE8d o)

From (3.27) we can see that the graph of J(p) is a parabola opening upwards. Therefore
there is a unique solution po € (0,28 — 1) such that J(p2) = 0; and J(p) < 0 for all
pE (26 — é, 6). Recall that p; is the unique solution for D(p) = 0 in (0, 3). The following
cases might occur

(1) p1 > po:

(a)

when p € (0,p2]: D(p) > 0, J(p) > 0 hence % > 0. We claim that the

graph of n = £(p) when p € (0, p2) in this case is always below the straight line
n=2B8—p— % in the (p,n) plane. By (3.28) we know this is true when p = 0.
This is also true when p = pa since p2 < 28 — é and therefore 28 — pa — é >0

J(p2)
D(p2)
then the intersection must be at least two points (counting multiplicities).

By (3.24) we have
dé(p) — (2B—p—3) _ Flp)

while

= 0. Therefore if n = £(p) intersects n = 28—p—3 when p € (0, p2),

dp ~ D(p)*
When [ > 3 and d > 2, F(p) a parabola opening upwards with F(0) < 0.
Hence if there exists 0 < p3 < ps such that 5((;33))2 = 0; then g%gz% > 0 for

all p € (ps,p2), and % < 0 for all p € (0,p3). Then n = £(p) intersects

n=28-—p— é in at most one point when p € (0, p2). It follows that {(p) <

28— p— 1 for all p € (0, p2).

When p € (p2,p1]: D(p) > 0 and J(p) < 0, hence % < 0, and there for

n = &(p) is always below the curve n = max{0,28 — p — 1}.

When p € (p1,8). D(p) < 0and J(p) < 0. Hence % > 0 and lim,_,, + % =
+-00.

Note that £(p) — (28 — p — 1) achieves its minimum in (p1, 3) at ps. Explicit
computations show that

. 1 d
Jm [5(;)3) - <2B —py— d)] TR

Therefore when § € (% — €, é) and e is sufficiently small,

§(ps3) — <25 —p3— 2) <0.
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Analyzing the derivative shows that £(p) — max{(28 — p — é) ,0} can have at
most two zeros; hence in this case Rg N {(p,0),det H(B, p,d) > 0} has at most
two connected components in the (p, 6)-plane.

(2) p1 < p2: when p € (0,p1), D(p) > 0, J(p) > 0, hence % > 0. By (3.28) we see

that £(0) < 28 — 2 < B. Note also that (8 — p)lim,_,,— % =400 > —p1 >
max{28 — p1 — é, 0}. Then the curve n = £(p) must intersect the curve n = § —p at
p5 € (0, p1). Then somewhere in (0, p5) we have {'(p) > —1. Then we have p3 < ps.
From (3.23) and (3.25) we see that if p3 < ps, then [ < 2. But this is a contradiction

to the fact that [ > 3. Then we must have p; > po.

Then the lemma follows; see Figure 3.2. U

Lemma 3.8. ¢'(p) is strictly increasing when p € (ps, 3).

Proof. Tt suffices to show that £”(p) > 0, Vp € (ps, 3). Note that
F'(p)D(p) = 2F(p)D'(p) _ 4(1 — Bd)*(I — 1)K (p)

Sl)= D T DeP
In particular we have
" . F’(p3)
and therefore
(3.30) K(p3) < 0.
Note that
(3.31) K'(p) = 3(dl — d = 1)L(p);
where

L(p) = =21(1 = B)*p* + (p+ B(1 - 28))?
In particular we have
L(B)=-p*(1-p)*(1-2) <0
and
L(ps) = 0.

Since L is a parabola opening downwards, with exactly one negative root and one positive
root p3, we obtain that

L(p) < 0; Vp € (p3,B);

and

L(p) > 0; Vp € (ps, p3)-
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n

(0,8)

(p57/3 - P5)7

|
det H >0

(0,28 -5)

(0,5)

(0,28 -5)

(0,0) (p2}0)(p1,0) (8,0)

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
*
|
|
|
|
|
|
|
|
|

FI1GURE 3.2. The top graph represents the case when det H > 0 has a unique
component in Rg; while the bottom graph represents the case when det H > 0
has two components in Rg.

By (3.31) we obtain

K'(p) < 0; Yp € (p3,B);
K'(p) > 0; Yp € (ps, p3).
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Hence K(ps3) is the maximal value of K(p) when p € (ps, 3).By (3.30), we obtain
K(p) <0, Yp € (p5, ).

By (3.29) we obtain
§"(p) >0, Yp € (ps, B).

Then the lemma follows. O

Lemma 3.9. Let | >3 and d > 2, B € (0,3) such that (3.20) holds. Assume RgN{(p,0) :
det H > 0} is connected. If

3.32) ¢(0) <~ vpe ()
Then
max Ua1(8,p,0) =204,(8).

(p,0)eRgN{(p,0):det H>0}

Moreover, (8%,1(d—1)3?) is the unique mazimizer for ¥, ,(B, p,0) in the region RgN{(p,0) :
det H > 0}.

Proof. If 5 € (0, ﬁ], we consider the corresponding region in the (p,n)-plane which is
bounded by

(a) p=0,n¢€[0,5]; and
(b) n =0, p €0,0]; and
(c) n=¢&(p), p € [ps, f]; and
(d) n=8-p;pel0ps].
See Figure 3.1.
If 3 € (55,2), when the set Rg N {(p,0 : det H(S, p,6)) > 0} has exactly one connected
component in the (p, #)-plane, its corresponding region in the (p,n)-plane is bounded by

(A) p=0,n€ 26— d,ﬁ] and

()7]—0 p € [28—3,0]; and

(C) n=&(p), PG[ps,B] and

(D) 77—/3 P, p € [0, psland

(E) p+n=28-g ne 0,28l
See Figure 3.2(1).

In either case by Lemma 3.4, the point 29 := (3,(d — 1)5?) is a local maximizer for
Uq1(8,p,nl). If the following conditions hold

(i) for any point z in the region or on the boundary of the region Rg(p,nl) N {(p,n) :
det H(f3, p,1n)) > 0}, the straight line joining zp and z lies in the region Rg(p,nl) N

{(p,m) : det H(B, p,In)) > 0} except the endpoint (in the case that z is on the
boundary).

Then for any point z in the region Rg(p,nl) N {(p,n) : det H(B, p,In)) > 0}, or on the
boundary of the region; let [,,, be the straight line joining z and 2y starting from zp and
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ending at z; we have
Wai(B,2) = Vau(B, 20) +/ N.pew¥ai (B, w)dw
lZOZ

where 8lzozyw\11d,l(ﬁ,w) is the directional derivative of Wq,(3,w) with respect to w along
l,~. Note that
NV (Bs w)‘ =0.
w=zq
Since H is negative definite in the region Rg(p,nl) N {(p,n) : det H(B, p,In)) > 0} , the
second order directional derivative satisfies

7, .w¥ai(B,w) = v Hv <0

for all w in the interior of the line [,,,; where v € R'*2 is the unit directional vector along
the line /., .. Then we obtain

Ny ¥ai(B,w) <0
for each w in the interior of the line [,,,; and therefore

Va8, 2) < Way(B, 20)
for any point z in the region Rg(p,nl) N {(p,n) : det H(B, p,In)) > 0}, or on the boundary
of the region other than zj.

Now it remains to prove condition (i). It suffices to check condition (i) for each boundary
point on the boundary of the region Rs(p,nl) N {(p,n) : det H(B, p,In)) > 0}. The straight
line in the (p,n)-plane joining zo and (3,0) has equation

__@d=1p
If for each p € [ps, f),
(d-1)8
1-p
Then conditions (i) holds. Since when p < ps and df < 1,

gp)<-1< (dl__lg)ﬁ;

it suffices to check (3.33) for p € (p3, 3); which is equivalent to (3.32). O

(3.33) ¢'(p) < -

Lemma 3.10. Assumed > 2 and [ > 3. If
1
.34 <
(3.34) B_dl—d—l+2’

then (3.32) holds.
Proof. Then (3.32) holds if and only if

¢(p) < - b,

1-8 "7
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which gives (3.34). O

Lemma 3.11. Assume d > 2 and | > 3. If (3.34) holds, then RgN {(p,0) : det H > 0} has
exactly one connected component.

Proof. We see that when (3.34) holds, the line segment passing through (32, (d —1)8?) and
(83,0) in the (p, n)-plane intersects the curve det H = 0 at a unique point (3, 0), and the line
segment lies below the curve, since

e both of them pass through the point (3,0); and

e The slope of the line segment is greater than or equal to the slope of the tangent
line of the curve det H = 0 at (5, 0) in the (p,n)-plane; and

e The slope of the line segment is strictly greater than or the slope of the tangent line
of the curve det H = 0 at any point other than (3,0) in the (p,n)-plane.

Note that the line segment passing through (82, (d — 1)5%) and (3,0) in the (p,n)-plane
completely lies in the region {(p,n) : (p,nl) € Rg} since the region is convex. Hence the
line segment does not cross the (possible) boundary n = 28 — p — é. Therefore the curve

det H = 0 does not cross the boundary n =28 — p — é either. Then the lemma follows. [

Lemma 3.12. Assume 3 <1, 2<d, and (3.3/) holds. Then

v .0) = 20
(pgl)%XRB a1(B, p, ) a1(B)

Proof. By Lemmas 3.9 and 3.10, we obtain that under the assumptions of the lemma,

v 0) = 20 ,
(p,G)ER;rer?ilietHzo} d’l(ﬁ’p’ ) d,l(ﬁ)

We now find

v 0
(P79)6R%E{L§etH<o} d,l(ﬁ,p, )

When the Hessian determinant is negative, Wq,(5, p, ) as a function of (p, §) cannot achieve
a local maximal value at an interior point; it cannot achieve the global maximal value in Rg
along the boundary satisfying det H = 0 either, since this is also the boundary of the region
det H > 0 where the function is strictly concave, and the maximal value in det H > 0 is
already achieved at the unique interior point (82,1(d —1)3?). Therefore if a global maximal
value of W4;(8,p,0) in Rg is achieved when (p,0) € Rz N {det H < 0}, then it must be
achieved along the boundary 6 = I(5 — p); see Figure 3.1. More precisely, the only possible
candidate for the global maximal value when det H < 0 is

max Wq,(8,p,1(8—p))

PE[ps,P]
Along the line 6 = I(5 — p), by (3.10) we have
(3:35)  Tauplp): = Yau(Bp, (B —p))

= —plnp+(1-1)1-28+p)In(1-28+p)+1(B8—p)In(d—1)
HE=2)(8 — p) (B — p) — 51— By (1 — §a)
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Then by (1.5),

i (515 — p)) = 8l 5+ (1= (1 = §) (1 = §) = 5(1 = ) (1 = ) = (5)

Moreover,
Cﬁdjﬁ(m:—lnp+(l—1)ln(1—25+p)—lln(d—1)_(l_2)1n(5_p)

and

(3.36) Plusle) _ 1 (-1 =2 1p(1-5)—(B+p—25

dp? T 1= 2Brp T B—p " pB-p(-26+0)

When p € [ps, ), dQle‘olf (o) > 0, and the identity holds if and only if p = p5. Therefore

%ﬁ(p) is monotone increasing when p € [ps, ). The following cases might occur:

(1) de&lﬁ(P) < 0; in this case

p=ps

max Ty 5(p) = max{Ty14(ps), Tai6(8)}-
pE€lps,0]

But both p5 and 8 are along the boundary of the unique connected component of Rg
such that det H(3, p,0) > 0, where ¥q,(3, p,0) is strictly concave with a maximal
value given by 2®4(5); hence we have

max{Tq;5(ps5), Taip(B)} < 2®q(B).

Hence the lemma follows when dejﬁ ) < 0. Or
p=ps
(2) de&f(p) > 0. In this case T, p(p) is increasing when p € [ps,3). Hence we
p=ps
have

max{Ty;5(p5), Ta1p(B)} = Ta1p(8) < 204:(6).

Then the lemma holds when %ﬁ(p) > 0 as well.
p=ps

Lemma 3.13. Assume one of the following conditions holds:

e/ =2 and € (0, é); or
o The assumptions of Lemma 3.12 hold.

Furthermore, we assume that

\de,l(ﬁvﬁQJ(d - 1)52) > 0.

we have

2
lim EZmﬁz = 1_5
m=oo (EZpp)?  \/B2(d+1—dl) —26+1
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Proof. Let L > 1 be a positive integer. By Lemma 2.2 and (3.7), we obtain

Fg(mp, mb) = m~2em¥ai(8.0.0) ! <1 + 0 (1>) .
472 (B~ p— 9) /0 (1 - 26d + pd + %) m

Then
mp 2mpB—2s

> > Fa(s,t) = (1+0<;>>

s=0 t:max{O,éLmB—Qs_ 2Tm}

em¥a (.87 2(d—1)8%) MO 2 2mB—2s—1 o~ [®a(8,87.2(d-1)8%)=2u (8,5 %))

>

=1 pmmax{oamp—2e-2p b1 (B = 5 = ) /e (1= 28 + 58+ 42)

472m2

We shall split the sum over 1 < s < mpf—2, max{0,4mﬁ — 25 — 277”}4—1 <t<2mpB-2s—1
into two parts

e Part I is the sum over (£, L) in a - neighborhood of (82,1(d — 1)3?); more
precisely

(,6) €N = {(s,t) ez?: |2 - < %;

3l

’; —i(d—1)8

vm d
e Part II is the sum over 1 < s < mf — 2, max{O,leﬂ—ls— %m} +1 <t
T

SL;1§s§m52;max{O,21mﬂlsM}Jrlgtglmﬁlsl.}
m

1 <
ImfB —ls — 1, such that (£, -L) is outside the # neighborhood of (52%,1(d — 1)5?).

Then we have
£5—2 ImpB—ls—1 —m|® 2 1(d—1)B2)—® st
1™ - o~ m[®a(B,6%1(d=1)5)~Pa(B,75 7% )]
4777'2 Z Z mn i S t st sd td
s=1 t:max{O,Zlmﬁ—ls—le}—H (ﬂ T m W) \/W (1 —2pd + ‘m + %)
= 1411

Let
S 9 1 2 1x2
bur 1= (—,6 L -8 ) e RIX?,
m m

and £§t € R?*! be the transpose of & ;. Note that when (s,t) is on the boundary of N,
from the Taylor expansion of ®4(3,-,-) at (52,1(d — 1)3?), we obtain

st H(B,5%,2(d —1)32)er 3
@d(67527Z(d—1)52)_cpd(ﬂ,;,;):_s,t (8,8 2<! )3 >f,t+0<<fm>>

Assume —\ (X > 0) is the maximal eigenvalue of H(3, 32,1(d — 1)5?%), then

B 05 )] = 0 (o)
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and
mf? lmﬂ—zls—l (3818~ (5, L)
s=1 t:max{0,2lm,8—ls—17m}+l (6 - % - %) 'r;% (1 —2Bd + 873 + %)

AL?
is approximately e” 2~ multiplying a convergent geometric series. Hence when m is large,

ﬁ

mlIl < C’" =0
m

as L — oo; where C” > 0 is a constant independent of m.

Moreover,
€6t H(B,82,1(d-1)5%)e] 3
{ - 2 t+o((\/ﬁ> )} 1
i ek (B— % =) /i (1-26d + 24 + f4) "

Hence we have

lim lim mI = ! / eXH(B’[ﬁQ(; e dxidxs
I=o0m=oe 4n?\/U(d ~ 1)B3(1 ~ dB)? Je2
(3.37) - 21
72y/1(d — 1)3(1 — dB)2/det H(B, 32,1(d — 1)3?)
where
x = (21, 72) € R1*?
Then the lemma follows from (3.37), (3.22) and (2.7). O

4. SUBGRAPH CONDITIONING

In this section, we show that conditional on a matching , the distributions of the number
of cycles of different lengths on G,, 4; converge to independent Poisson random variables as
m — o0o. Similar results when conditional on a perfect matching was proved in [5].

Let k£ > 1 be a positive integer. Let

(k] :={1,2,...,k}.
Define a k-cycle on G, 4; to be an alternating sequence of vertices and hyper-edges
V0, €1, ULy« v« y Vie1, €4y Uiy - v oy V1, €k, Uk
such that

each v; is a vertex for 0 < i < k;
each e; is a hyper-edge for 1 < j < k;

v # vj, for any i # 7, {i,5} #{0,k}; and

[}
[ ]
e vy = vg; and
[ ]
e for each i € [k], ¢; is incident to both v;_1 and v;.

In particular, a 1-cycle is a hyper-edge, at least two half-edges of which share a vertex.
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Let C}, be the number of k-cycles on G, 4, and let b > 1 be a positive integer.
For ¢ = (c1,c¢9,...,cp) € NP, Let

QC = {gm,d,l € Qm,d,l : Ck = ¢k, ke [b]}

For g € (0, é), define

EB,C = E(nglgmw S Qc).

For each G a1 = (V,E) € Qpqy, let Qg,, 4.5 be the set of all the matchings on Gy, 4
consisting of exactly mf present hyperedges. Let My C E, |My| = m/3 be a fixed set of mf
hyperedges. Note that for any other set M of mf hyperedges, the probability that My is
matching on a random graph G,, 4 is the same as the probability that M is a matching on

a random graph G, 4. More precisely,

P(M € ng,d,lﬁ) = P(MO € ng,d,lﬁ) =

(Im(1— B))! (Im(1 —dpB))! d"™P (i)
(Im(1—dp)t  (Im)!  (42(1-dp))!

and from the symmetry of hyperedges we can also see that

Then

(4.1)

P(Gm,a1 € QelM € Qg,, 4,.8) = P(Gm,a1 € Qe|Mo € Qg,, 4,.8)

1
Bse = 57 2 > 1
€2l

Gm,a,1€0c MEQg, ;.8

€|

= 0 > P(Me€Qq,, .5 Gmal € )
¢ McE,|M|=mp

P(Gm,d; € Q| My € Qg dl ﬂ)

= — — P(My € Qa,, 415 5)
P(gm,d,l € Q) MCEZM|m/3 .l
_ EZngP(Gap € Qc| Mo € Qg,, ,.,8)
IP)(gm,d,l € Qc)

Let By, t=0,1,..., L%J be the expected number of k-cycles including exactly ¢ hyperedges
from My. Then we may compute E; as follows

(1)

Choose t hyperedges from the mfS hyperedges in My; there are (”;”55 ) choices. Cycli-

(t—1)!
21

half-edges from each of these t hyperedges to connect with half-edges not in Mp,
there are (I(I — 1)) choices. For 1 < i <t, let s; > 1 be the number of edges along
the k-cycle between the (i — 1)th and ith hyperedge in M, along the cycle. Then

cally order these edges, there are different orders. Choose ordered pairs of

we need to choose positive integers sy, ..., Sk, such that sy +...+ s = k —t. There
are (k;tzl) choices.
Choose k — t hyperedges from the m — mf hyperedges not in My. Consider all

the possible orderings of these hyperedges as well as choices of two ordered half-
edges in each of these chosen hyperedge to place them along the cycle, there are
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(k —t)![1(1 — 1)]*~* possibilities. The factor (d — 1)* indicates the possible number
of locations of two half edges incident to the same vertex along the k-cycle.

(3) In the k — 2t vertices along the cycle which are not incident to an edge in My along
the cycle, assume that s of them are incident to an half-edge in My but not along
the cycle.

Hence we have

By = {(””;”m>(k;lﬂﬂa—lﬂﬂ(d—lf[ﬁi@ﬁ—mSCiﬂ)(i)d

s=0

(Im —1mp —2k)!  (Im — (ImB + k — s)d)! ~ dmPrh=s (lo))
(Im —(ImB+k — s)d)! (Im)! (I~ (imB + k — 9))!
Ift>1,

o= (") S - (U () o o e -y

S sflmpB —2t\ (k—2t (Im — lmpB — 2k + 2t)!
Xl;;w_2)( s )( s )dﬂm—amﬁ+k—%—sﬂﬂ

(Im — (ImB +k — 2t — s)d)! ~ dmPri=2i=s (lm))
(Im)! (I — (ImB+k —2t —s))!

Then

N1

L5 L5 ko2t

Ey
(4.2) E(Cx|My € Qg 4., ) = = FE Jg(t,s)
o’ = PMo € Qg,,.008) 1= ; ’

where when t > 1,

Fars) = O@ﬁ:gjbnmﬂ—UPM—DWd—DﬂmYz;T?LW
(imB —2t)! (Im — Imp — 2k + 2t)!

(Imp — 2t — s)l(k — 2t — s)!s! (Im(1 - B))!
dk=2t=s (1 — dp))!
(I — (ImB+k—2t—s))!

and
(m —mp)!
2(m —mp —k)!
(Im —Imf — 2k)!  d*=* (Z(1 - dp))!
(Im(1 =0 (& —(ImB+k—s))!

Esx(0,5) (k= D~ ]~ 14— 2

Lemma 4.1. When k is fized and m — oo,

[3] k—2

J
_(d=Dri-1)* (=1)*p"
2 §E57k(t,8)~ 2% <1+ (1_5)k>

ISES
5%
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Proof. When £k is fixed and m — oo, we have when t > 1,

d=D)RI DR —dB)F (k—t =1\ (k= 26\ 1 BT (1 - B)!(d - 2)°
Fanltes) = 2(1- B)F ( t—1 >( s )t (1—dp)>+s
and
k—2t k—2t
~ (d—DF1—-1D*A—dB)* 1 [k—t\ [k—2t\BT(1—B)(d—2)*
2 Baaltis) = 2, 20— B k—t( t )( s > (L= dp)errs
k(] — 1)k _

- 2(11)_(;’);) kl_t(k t t)’Bt(l B -28"

Moreover,
(A=D1 =11 = dB)* (k\ B(d - 2)*

Fail0,) = 2k(1 — B)F ( ) (1—dp)*

and
k
_(d=1)F1-1)*1 - 2p)*
A
Hence we have
L5]) k-2t 15]
2 _od=DFI-DFA-280F S 1 k-t
;;Eﬁ,k(t’s) ~ 2(1_B)k tzok_t< ¢ >a
where
_ B-5)
- (1-2p)?

If f(x) is a Laurent series of x, for i € Z, let [2°]f(x) be the coefficient for % in f(z).
Then we obtain,

L5

(M)jl_
! J

= —of[z"]log (( 1+4a ) <1+ 1+m>>
k

+

<M+1>k

k [(1—@)
(=DFp*+ (B-1*
k (1—2B)*
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Then the lemma follows. O

Hence by (4.2) and Lemma 4.1 we have

(d-Dri-1)* (=1)*s"*
4.3 E(Cy| M, ~ 1+———) = .
(4.3) (CrlMo € ng,d,l,ﬁ) ok + (1— 5)/& KB,k
Lemma 4.2. Let g > 1 be a positive integer; ki,...,kg > 1 be positive integers, and
T1,...,7g > 1 be nonnegative integers. Let € (0,%). Let My C E and |My| = mp.

Let N(m,kn) (rak2),ns(rg )1 be the number of (d,l)-regular hypergraphs with m hyperedges
satisfying all the following conditions:

o My is a matching; and

e The hypergraph contains r; labeled k;-cycles; i.e., we can find r; k; cycles in the
hypergraph and label them by 1,2,...,r;; different labelings of the same choice of r;
k-cycles are counted differently; and

o Any two cycles among the r1 ki-cycles, ro ka-cycles,. .., rq kg cycles are disjoint.

Let Ny, be the number of (d,l)-regular hypergraphs such that My is a matching. Then for
fized g, (r1,k1), (r2, k2), . .., (rg, kg), let m — oo,

N7 9
(lekl) (7"27]‘32): . Tgykg H ,Ufﬂ
NMO i=1 7

Proof. The total number of (d,[)-regular hypergraphs such that Mj is a matching is given
by

(Im(1 - B))!
d'(1=d8) (Im (1 _ gg))!
We shall prove by induction. First we consider the case when g =1 and r; = 1. We have

. R0 (ma gy (e
Mo ™G Z Fot:s)

Ny =

,_.

where t is the number of common hyperedges of the dlstmgulshed k1 cycle and My, and
s is the number of common vertices of the distinguished k cycle and My not incident to a
common hyperedge of the cycle and Mj.

Fix k1,d,l and let m — oo, by Lemma 4.1 we have

* 45 1=49) (I (1 _ g3)),
(44) N(Lkl),l(s’t) (lm(l — 5))' ~ BBk

with pg given by (4.3).
Note also that

k k
G ok1—2t11 J k1—2t1, J kg—2tg1 (5] kg—2tgrg+1
* —
TP DD DI DI DA Z )IRTED DD
t1,1=0 s1,1=0 t1,rq =0 s1 1 =0 tg,1=0 s54,1=0 tg,rg+1:0 Sg,Tngl:O

Ny k) (raks)o(rg ki) 1 (5115 811) 55 (Sgrg 15 Ly rg 1))
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where

N(*rl E1)y(r2,k2),..s(rg kg),1 (81,1, 11, 1) s (Sgrgttstgr,+1)) = Nfrl,kl),(TQ,kz),...,(rg,k:g),1((51,17tl,l)a e

(Im —ImBd —377_, 375 (ks — 8;,5)d)!
(Im —1mp = 377, Zj:1(2kl th’))!
R R G zg S (ks — 2t — si5))!
( —Impd — Z =1 Z 1 (ki =2t 5 — si,5)d)!

|:<mﬁ Z 2 ]> M[l(l _ ]_)]tg,rg+1 (kg - tg,rngl - 1>:|
977g+1 2! tg,rg-‘rl -1
ki —ti 5 _
("m0 R ) gy - )| @ 1P a2y
tg rg+1 ’
Imp — Z 1(275@73‘ + Si,j) — 2t97r0+1 k?g — 2tg77ng+1
(Sg,rg+1)!
Sg rg+1 Sg,rngl
(Im —1ImB — 377 370 (2ks — 2ti 5) — (2kg — 2tg,r,11))! (Ad)!
(Ad)! dAA!

with

g T
A= ljm — lmﬁ — Z Z(kz — 2ti7j — S@j) — (k‘g — 2tg’7«g+1 — Sg,rg+1)-
i=1 j=1
Here for 1 <i¢<gand 1 <j <r;+1, ¢;; is the number of common hyperedges of k; cycle
labeled by j and My, and s; ; is the number of common vertices of the k; cycle labeled by
j and My not incident to a common hyperedge of the cycle and Mj.
Fix ri,k1,...,74,kg,d,l and let m — oo, we obtain

d'# 0= (lm (1 — qp))!

N k) s(ra ko) (ra ki) 1 (51,1, 810)5 -+ (Sgrg 15 Lg g 41))

(Im(1 = B))!
\ d'# 0P (B (1 — dp))!
~ N(rl,kl),(rg,kg),...,(rq,kq),l((81717 t171)’ ) (59>T’g’t977"g (lm(l d_ 6))[

" (d— 1)k (1-1) kg gto.rg+1+5g, e+l (1 — dﬂ) targ+1 750,41 (g — 2)S0:To 1
2(k9 - tg,rg-‘rl)(l - ﬂ)k a=torg+l

(kg - tg’Tngl) (ky - 2tg,rg+1>
lgrg+1 Sg,rg+1

le’"(l—dﬁ) (lm(l _ dﬁ))

. *
- N(’I”l7k‘1)7('l’27,62)7...,(7‘971459)71((81717tlyl)’ R (Sgﬂ’g’tgﬂ“g)) (lm(l — 6))' Eﬁ kg ( 9, 7“9+1’8977’g+1)
Moreover,
k ¢ k
Jkl 27511 L%J k172t1,,~1 \.Tyj kg_th,l I.TgJ kq 2t‘1 Tg
*
Ny k1) ey o) (Lg )1 = Z Do Dl DD DR
t1,1=0 s1,1=0 t1,r, =0 s1,r, =0 tg,1=0 s54,1=0 tg,rg=0 $g,ry=0
k
L= ] kg1 —2tg41
.
> D Nikalrok)(yer)a (81,5000) o (5., b)) (Sg1,05 g 41,)

tg41,1=0  sg41,1=0

) (Sg,rgvtg,rg))
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where

Ny 1) (g ki) (Lkg ), (SL1 EL1) o (Sgurg s gy ), (Sg1,1, Eg41,1))

. (lm —ImpBd — 327, 3700 (ks — 5i,;)d)!
= Nowk ooty b (1055100 (8.0, Bo.r,)) (Im —ImpB =370 >0 ( Qtij))!
qH—imB= UL (ki =2t =i, (kg — Z L (i = 2t — 50))!

(Im lmﬂd Z =1 Z 1 (ki =2t 5 — si,5)d)!
mp — E =1 Z ) (t g+1,1 — 1)' [l(l _ 1)]tg+1,1 <k9+1 —tg+1,1 — 1):|

tg+171 2! tg+171 —1

(
(7 e BB gt | @ - - 2y

k9+1 —lg+11

ImB — 307 30511 (2t + si5) — 2tg10 (Kot — 2tg41 |
(8g+1,1)!
(Im

Sg+1,1 Sg+1,1
—1mB — 377 D251 (2ki — 2ti ) — (2kg41 — 2t9111))! (dB)!
(dB)! dB B!
with
—lmp — Z Z = 2tij — sij) — (kg1 — 2tg411 — Sg111)
=1 j=1
Similarly we obtain that for any fixed r1,k1,...,74,kg,d,l and let m — oo,
. dlm(l dpg) (lm(l—dﬁ g
N(Tl7k1)7(r2ak2)v"~x(ryvkg)71((81’1’t171)’" "(597Ty7tgvry)) (lm(l _ ~ HHE’Bk 7J’SZ7J
i=175=1

Therefore for any fixed r1,k1,...,74,kqg,d,l and let m — oo, by (4.4) and Lemma 4.1 we
obtain

PO (o g e ((EH N 2

Ny k) (raka) .. (rg g 1 (m(1 — B))! };[1]1;[1 tzo 521 Egk, (tij, 8i,5)
g
~ H 148.k;)
i=1
Then the lemma follows. ]

Lemma 4.3. Let g,k1,...,kg,71,...,74,3, Mgy be given as in Lemma 4.2.
Let

N(*Tl7k1)7(7‘27]{72)7---7(7‘97]{39)72
fying all the following conditions:

be the number of (d,l)-reqular hypergraphs with m hyperedges satis-

o My is a matching; and
e The hypergraph contains precisely r; k;-cycles.

Then for any fized r1,k1,...,7rg,kg,d,l and let m — oo, we have

Ny k) (2 es).o (g ig) 2

%
M0 N ) (raska) (g kg) 1

=0.
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Proof. Note that the total number of vertices in a (d,[)-regular hypergraph with m hyper-
edges is %m. It is straightforward to check that for any fixed r1,k1,...,74,kg,d,l and let
m — 00,

N(*rl,kl),(T‘Q,kg),...,(rg,kg),Q _0 < d )
N* 7 Um
(7‘1,k1),(7‘2,/€2) ..... (’r‘g,kg),l

Ilm
Then the lemma follows. O

Lemma 4.4. (1) When m — oo, for fired b € N, C1,...,Cy are independent Poisson
random variables with means given by

d— 1)k —1)*
(4.5) E(Ck) = ( )215: ) =\, Vk € [b]
(2) Let Mo C E and |My| = mB. Conditional on My € Qg,, ,, 5, when m — oo, for
fired b € N, C1,...,Cy are independent Poisson random variables with means given

by (4.3) for k € [b].

Proof. Note that Part (1) of the Lemma when [ = 2 was given by Lemma 1 of [23]; see also
[25]. We only prove Part(2) here; Part (1) can be proved similarly.

Let g,ki,...,kg,r1,...,7g, Nn be given as in Lemma 4.2, Let N k1) (rak),...,(rg,kg)
be the number of (d,)-regular hypergraphs with m hyperedges satisfying all the following
conditions:

e My is a matching; and

e The hypergraph contains r; labeled k;-cycles; and

e at least two cycles among the ri ki-cycles, ry ko-cycles,..., ry k4 cycles share a
vertex.

Then by the inclusion-exclusion principle,

1 ur—1 ug—1 g 31 T S;
1 *
N N k) (rg eg) — E E [H <T>] (N(sl,kl) Asako)d T Ny,
0 2

§1=T1 sg=rg Li=1

< 1 g (_]‘)Si_ti Ui N* N*
- NMO H ul' T; < (ulvkl)r":(ugvkg)vl + (ulvkl)v'“v(u!]vkg)’Q) :

=1

By Lemmas 4.2 and 4.3, for any fixed r1,k1,...,74,kg,d,l and let m — oo, by (4.4) we

have
9 oHBk

N(Thkl)v"'r(rgvkg) ZMB ki
P(Chy = T1y-+ iy = ol Mo € Qi 01,9) = — s o 1]1 o
Then the lemma follows. g
Let ¢ = (c1,...,cp) € ZP be a b tuple of non-negative integers. Define

pe :=P((C,...,Ch) = c);

m%%m>
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i.e., pc is the probability that in a random (d,!)-regular hypergraph with m hyperedges,
there are exactly cj k-cycles for all k& € [b]. Then by Lemma 4.4(1), when m — oo,

bk (g%
e k)

Pe R~ —_—
‘ kl_Il (ck)!

Then by Lemma 4.4, when m is sufficiently large
b c
Ese ~ ([ "o (E25) ) EZus
7 k=1 Ak

(4.6)
Recall the following lemma about Poisson distributions:

Lemma 4.5. Let X has Poisson distritubion with mean . Then
ue?

e 2

IN

P(X <p(l—e)
P(X > u(l+e) < [ef(1 4 ¢)~0+9]"

Proof. See Theorem A.15 of [3].
Lemma 4.6. Let a > 0 be a positive constant. Then for any positive constant W > 2,
1

Ak
y
1
e“lg y 1 y2 yAE
(4.7) S < e i 4 e PGz 4 o (ort4m) -1 =k,
T
ar2
1 + yl Ak
a/\,?

d(z) =2z — (14 z)log(1 + 2).

)

where
Proof. We use L to denote the left hand side of (4.7). Note that
Y
e‘”k% v — <1+ y1> log (1+ Y
__ _a)2 aX2 aX2
(48) T yl =€ 'k k k
1+ yl a)\]?
a)\E
Consider the following cases:
(1) -4+ € (0,3]: note that
a)\E
22 1
log(1+2)>2——,V2€(0,=
2 2
Let z = Y, we obtain
a)\g
22 23
ez~ (142)log(1+2) (7*7)
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and therefore

2a
3,2 _ Yy
LSe 2a /\k Se 4a2

where the last inequality follows from the fact that — € (0, 3].

a)\g
(2) L+ € (3, W], where W > 2 is a positive constant: note that
A
¢'(z) = —log(z +1) <0, V2 >0
Therefore

1 1 3 3
sup ¢(z) = ¢ () =— — —log () <0
(i) 2) T2 27%\2
Then by (4.8) we obtain

2

L S 6_‘¢(%)’112ym

(3) -4 > W > 2: we have

a)\E
z—(14+2)log(l+2) < —z(log(l+2)—1) <0, Vz >2
Again by (4.8), we have

L < ¢~ (og(1+W)—1) 55

P o=

Lemma 4.7. Assume 3 € (0, é), I <dandd>3 Fory >0, define

1
(4.9) S(y) :=={c e N’ |cp — M| < yAZ, Vk €[]}
Then for all sufficiently large y, and any constant W > 2

1

ceS(y)

(L-1)(d-1)p*\’ 1-8 ;
X<1_< (15 >>¢1—2B—(dl—d_z)ﬁ2<EZmﬂ>

2322 2 g o(3)|v? -
I I R

Yy

()
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Proof. Note that by (4.6),

b 2 \* a2
,U k e T2H8,k
I C R (i
ceS(y) ceS(y) k=1 k):
= (EZ :
ms)” 11 M (c)!
k=1
ckiler— Ak\<y)\2
(ug,kfkk) _HBk qu Ck 1
— B,k
4.10 = (EZ e Ak 1—e >k
(410 ezl IT () &

1
Ck:|Ck7)\k|>y)\13

From (4.3), (4.5) we see that

-1 k Rk
= ()
Hence
Mok (—DFBF\? (—1)kgF
(4.11) A _Ak<1+(1—6)’“> ~ <1+< mk)

2
. . . 7
Let X} be a Poisson random variable with parameter /\L:. Assume

2 2
3 © 1 1
Ae = yAF = (1—u) (Aﬁk> Ak+w—<1+vk><f’k>.

k k
Here
(4.12) Uk, Vg > —— 5
211/
when y is sufficiently large. Then by Lemma 4.5
(1- “k)( Bk) Cr “%,k 2,2
M%ﬁ k e Pk _MkHBk
> ok = P(Xp<(1—up)EXy) <e 2
one0 )\k Ck!

By (4.11) and (4.12) and 8 € (0, 3) we obtain

I
(lfuk)(—fk’f) ) cn 7#%,;“ (C1yk gk
Ak ¥ (1 2 g 2\2
> (Mﬁk) O () on )

>\k Ck!

Similarly by Lemma 4.5,

Bk € % e’
—_ =P(X; > (1 EXH)<(—r——
Z ( Ak ) cr! (Xe = (1+ vp)EX) < ((1 Jrvk)HUk)

k:(l-‘rvk)( )
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When vy, is sufficiently large
d evk evr
dor o =0 Txogre <F
Again by (4.12) and (4.11) we have
_1ykgk
) Ak <1+((1 o )
o0 2 Ck HB.k 7%
K3k e *k e
. : <
(4.13) > 2 /\k> = T
() (e2p)
We shall apply (4.7) with a = 2
By (4.10) we obtain
2 2, o(% 2 _ _
S B, > ll_be (422 B 2>2_b6—%<m2_be<mgmw>1)3(3%)2]
ceS(y)
b (Hﬁk Ak)
X (EZpmp) H
Moreover, since 8 € ( , d) when [ < d we have
[ 5 = S =t () ((z ~ - 1)/32>” .
k=41 B (1-5)
Let
2 2, o(3)]v? 4o _
0o 1— b (D et (822 _ D (2) _ estomna(a2y
Hence
—1
(g k=) (g E—AR)?
S peEle > (EZup)O[[e v e )
ceS(y) k=1 k=b+1
_ —182\° oo p2F@—1Fa—1k
_ —182\" _
R (M (Bl 1-5
(1-5) V1I=28—(dl—d—-1)p?
O

Then the lemma follows
Cy be random variables denoting

Lemma 4.8. Let S(y) be defined as in (4.9); and C1, ..
b-cycles in a random (d, l)-regular hypergraph with m hyperedges
) & 5())

the number of 1-cycles
Let
p=P(C1,...,Cy
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N[

Then there exists an absolute constant 6 > 0, such that for all sufficiently large y)\,: and
m, and for any constant W > 2,
2 2 2 1
P<be™T +be T + be19(2) I3 + be~(os(LHW)—1)yAZ
Proof. Recall that as m — oo, C1,...,C} are independent Poisson random variables with
parameters Ay, ..., \p, respectively. When m is sufficiently large, by Lemma 4.5,
y Y2
Pl CrL <A 1——= <e 2
)\5
k
Also by Lemma 4.5,
-1 Ak
Y2k
PlCr>n [1+-%] ] < R
A (L+yA, 2o
By (4.7) when a = 1, we obtain
A2 .
2 1
e o B DI L o~ ogw) -1
_1 -3 -
(1 + y)‘k 2)1+y)\k
Then the lemma follows. O
Lemma 4.9. Assume § € (0, (d—1)1(1—1)+1> There exist constants A, B > 0 independent

of y, such that for each ¢ € S(y) and sufficiently large y,
Ege > e WHPYE(Zy0)
Proof. By (4.6), we obtain

b k41 gk k k c
(=P ER (@-nPFa-1) —1)kpk\
Eﬁ,c ~ [H e (1,5)16 2k <1 + ( ) /8 )

EZpg > BZysUVY

k=1 (1 - B)k
where
(=nFHLgk (@-nka-nk (_1)k5k Ak
U = e (1-p)k 2k <1 + >
11 =3y
1
A2 22
V = <1 - H 1+ ——
ke[b],k odd (1-5) ke[b],k even (1-5)
Then

b Cyk+lgk vk _1\k _yik+i—1 55k
(=1 BE(d—1)"(1-1) co (=1) B
U = H e 26(1—p)k AR Ry
k=1
1
2k g1k —1)k 2\ 1
6_ 21311 g éfk(ljﬁ)(Qk ) — ]‘ 7 2ﬁ B (dl B d T l)/B 4 - efA
(1-p)?

>
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and
1
)\7

1
00 k AP 7Z£IW
() 2 e
k=1
1

, we have

When0<ﬁ<m

/@D 1)
TE

1
A .
Hence Y7, 55— is convergent. Then the lemma follows. O
aA=pr 4
ﬁk

5. FREE ENERGY

In this section, we show the convergence in probability of the free energy to an explicit
limit when (I[“FJng*)2 and EZZ%B* have the same exponential growth rate, where 3, is the
unique root of (1.2).

Lemma 5.1. Let g € (O, %), 1 >2,d>2 such that one of the following conditions holds

(1) 1=2; or
(2)1>3 and B < L.

Then as m — oo
1
m log Zmpg — ©4,4(8)

in probability.

Proof. By (2.3), it suffices to show that

) 1 Zmp B
(5.1) W%gnOO]P’ (m log EZm5’ > e> =0.
for all € > 0.
Let
C=(C1,Cq...,Ch)
be the random variable denoting the number of 1-cycles, 2-cycles, ..., b-cycles in a random

(d,l)-regular hypergraph with m hyperedges. Let E3 ¢ be the conditional expectation given
by

Egc = E(Zmﬁ\C)
Then

1 Z, 1 VA 1 E
m EZ,s m Egc m EZns
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By Chebyshev’s inequality, for any ¢t > 0
E (Zms — Es.c)?

(5.2) P(|Zms — Epcl 21) < -

By Lemmas 4.7 and 3.13, we obtain
2
E(Zms — Epc)’ = EZy,-EEj¢

= EZZ;- Z PeES . — Z peE3 .

ceS(y) c¢S(y)

3
(5.3) EZ}s | be” 1) 4 be 22 +

IN

Then by Lemma 4.8 we have for any constant W > 2,

IP’(Tln >e> P(C ¢ S(y ))—I—IP’(‘lg

Esc

T
log =12
Esc

IN

>eand C e S(y )>

1
< be % 4bhe T+ be 1937 4 pe(op(+W)-1A] 4 P+ Py

where
Py = P(Zns < Egce ™ and C € S(y))
< P(|Zmp— Escl>(1—e™)Esc and C € S(y)) =P
P, = P(Zyup> Egce™ and C € S(y))
< P(|Znp — Esc| > (™ —1)Egc and C e S(y))
Note that

Py < P3
when m is sufficiently large. By Lemma 4.9, we have
P <P (yzmg — Epcl> (1 —e ™) HBYEZ, 5 and C € S(y)> =P,

Then by (5.2), (5.3) we obtain

eQAHByEZ%g (1—1)(d—- 1)ﬁ2 b

where

1-0 = be_(g:l) T 4 be ~45(%2)° 4 beaw? (433)° _ pe—llos1+W)-1%(42)”
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Let
3By

_1Og ((l—l)(d—1)62)

b=
(1-8)2
and

2\d-1
By Lemma 3.13, as y — oo, the right hand side of (5.4) goes to 0. Moreover,

1
}P’<
m

Esc _
P :]P) ) me < me 0
5 <EZmﬁ >e > <e — U,

(log (1+ W) — 1) <d_2)2 > 3B

E
log 8C.
EZpms

>6> < P+ Fg;

where

as m — oo; and

Esc _
P = Pl <e ™| <P+ B
° <EZmB ‘ > =TT

where
Pr = P(C¢Sy);
Py = P(C e S(y))P(e”AHBY) < e7™€|C e S(y)).

We obtain P; — 0 as y — oo by Lemma 4.8 and Ps — 0 as m — 0 by Lemma 4.9. Then
the lemma follows. O

It is straightforward to check the following lemma.

Lemma 5.2. Let Ly be given by (3.34). If
@}, (L1) <0;
Then By < L.

Proof of Theorem 1.1(2). By Theorem 1.1(1), it suffices to show that

. 1
nlgIle(m log EZmp, >e> = 0.
for all € > 0. Note that
1
Pl—]l <R+ R
<m OgEng* >e)_ 1+ 2

where

Z Z
= ]P) me . — IED —me
R < >e > ; Rs <EZm,3* <e >
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Note that
le Zj
EZ,.3.

m EZJ
e K23,

[M]=

R =P >e™ ] <

J

EZns m

j=1
as m — oo, where the limit follows from the fact that
1 1 1
lim —logEZ,3, = max{ﬂ € <O, > : lim logEZmﬁ}.
m—o0 M, d m—0o0 M
Moreover

m
d .
=14

= P| == -
Ry EZpmp.

<e ™| <P @<e*m€ — 0,
< EZpms.

as m — oo, where the last limit follows from (5.1). Then the lemma follows.

6. WEIGHTED FREE ENERGY

— 0,

39

In this section, we show the convergence in probability of the weighted energy to an

explicit limit when each hyperedge in the matching is given a sufficiently small weight

x > 0.

Let > 0. Define the weighted partition Z(z) function for matchings on a (d, [)-regular

graph as in (1.6). When 3 € (0, é), we have
ngxmﬁ = m—%em(ﬁd,l(ﬁ@))
where

Ad,l(ﬁ7 x) = (I)d,l(ﬁ, x) + BID(CC)

Hence we have

aAd,l(Bv .7))
o5 1,(8) +1n(x)
and
82Ad l(B’ ZE‘)
377@ =®,(B) <0
Since
.00 (B,T) p
Jim SR~ Ina) + lim 90,(9) = +oc
Jim Mdg(ﬁﬁ’l‘) = In@) + fim @,(5) = —o0
We obtain that there exists a unique S (z) € (0, é), such that

0Aq1(B, )
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and

Ag(B«(w),r) = max Ag(8,z)
pe(0,3)

and moreover [, (x) is the unique maximizer.

Proof of Theorem 1.1(3b). Note that

. < 1 Z(x)
Z(z)

log em[®@a,1(B«(2))+Bx(x) ln(m)] ‘ > 6) < Q1+ Q2
B Z(x) " ; = —me
v <em[®d’l(ﬂ*(m»+ﬁ @@ ¢ > et (em[@d,z(ﬁ*(x))+ﬂ*(z) @] < © )

Note that

where

L Z(a) -
Q = P em[<1>d,l(6*(x))+,3*(x)ln(x)]>e <

- P <em[¢d,l(ﬁ*(x))+ﬁ*<x> n@] = m

'M&\s

Zj(x) 1 eme>

J

m EZ;(x)
e B G A @] O

'mes

<
1

J
as m — 0o, Where the limit follows from the fact that

.1 1 1
W%gnoo p- logEZ,,,3, (z)(z) = max {ﬂ € <0, d) : W%gnoo p- log IEZmB(a:)} .

If ®},(L1) + In(z) <0, then

(6.1) Bi(x) < L.
Moreover
T Zi(@) Zns. ()
j=1J —Mme mﬁ*(ac) —me
Q = Pl o G amnE < =P <em[¢d,l<ﬁ*(x>>+ﬁ*<x> (@) < ¢ )

Zmﬁ*(w) —me
= F (emm,lw*(x))] <¢ > =0

as m — oo, where the last limit follows from (5.1) and (6.1). Then the lemma follows. O

7. ANOTHER CRITERION TO GUARANTEE GLOBAL MAXIMA

Lemma 7.1. Assumed > 2,1> 3 and 0 < fd < 1. For any straight line in the (p,n)-plane
passing through (5%, (d — 1)%) with slope in s € (—oo,—1], the second order directional
derwative of V4, along the line is strictly negative when p € (,82, @) and

dl+12-21—d+1

(7.1) f< 2412 — dl
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Proof. Let s € (—oo, —1]. It suffices to show that under the assumptions of the lemma,

_ O*W 4, L 0?4, 0*V 4,

Y(s): 2 <0
(s) 9,2 s an? + 2s 990
By (3.11) (3.12) and the fact that 6 = 7l we obtain
1 -1 2(0—1) %

i -

—(s+1)? < 2! + ld )
B—p—n 1—=28d+ pd+nd
When (p,n) is along the straight line passing through (52, (d — 1)3?) with slope s, they
satisfy the following equation

n=s(p— B+ (d-1)s
When %2 < p < @ and s € (—oo, —1], we have
0<n<—p+dB

and therefore
1 -1 21 — 1) l
Y(s) < —= + n - —Y(-1
(#) p 1=28+p B-p dB*-p -
Hence it suffices to show that Y (—1) < 0 when p € (5%,d5?) and (7.1) holds.
Explicit computations show that

B Ulp)
p(dB% = p)(B—p)(p—26+1)

Y(-1) =

where
Ulp) = (I(1 = dB?) — 1)p> + B[l — 1+ B(d — 21 + 2 — 2dl) + 33%dl]p + dB3(1 — 23)
Then U(p) is a parabola opening upwards. The following cases might occur

(1) U(p) = 0 has no real roots, then U(p) > 0 for all p € R, in particular this implies
that Y(—1) < 0.

(2) U(p) = 0 has two real roots p,, < par. If par < B2, then U(p) > 0 for p € (52,dB?),
and therefore Y (—1) < 0.

Let T be the discriminant of U(p). In case (1), 7' < 0. In case (2), we need 7" > 0 and
VT — B[l — 14 B(d — 21 + 2 — 2dl) + 362%dI]
2001 — 5% — 1)

Explicit computations show that (7.2) holds if and only if
(7.3) —d*?Bt +2d%1?B3 — dH1B? + (=2d1* + 2d])B+dl — 2l —d+1>+1>0
It is straightforward to check that (7.3) holds whenever (7.1) holds, d > 3 and [ > 2. O

(7.2) PM = < /32

Lemma 7.2. Assume d > 2,1 > 3 and 8d < 1. Then along the line segment joining
(8%, (d —1)B%) and (dB%,0) in the (p,n)-plane, there exists ps € [3%,dB?], such that
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o When p € (52, pg), 8\;;’1 1s decreasing; and

e When p € (ps,df?), 83;1’1 is increasing.

Proof. Let
PV Py
 0p? OpOn

X(p) :
It suffices to show that

* X(p) <0 when p € (6% ps); and
e X(p) >0 when p € (ps,dp?).

By (3.11) (3.12) and the fact that 6 = nl we obtain

s (Y
Xlo) = » 1281, B-»
V(p)

p(B—p)(p—26+1)

where

V(p) = o> + (1 — 28— Bl)p + 26> — 3
Note that V(p) is a parabola opening upwards with exactly one positive root and one
negative root. Moreover,

V(0) = —B(1 —28) < 0.

Then the lemma, follows. O
Lemma 7.3. Letd>3,1>2 and B € (0, é) Assume (7.3) and (3.20) hold. If

<0

(p,0)=(d}3?,0)
Then (p,0) = (8%, (d—1)18?) is the unique global mazimum for W, ,(83, p,0) when (p,0) € Ra.

(7.4) = (8, p,0)

Proof. Let z = (p,n) be a point along the line segment joining 2z := (%, (d — 1)3?) and
21 := (dB?,0) in the (p,n)-plane. By Lemma 7.2, we obtain

a‘I’dl a\I/dl 2
9 9 < .
L A 5.a%0)} <0

By Lemma 3.3, if we consider the region Rgo C Rg in the (p,n)-plane bounded by

ov
(3.t < e { 445, 2, (0 1)16%),

e 1 =dp%— p; and

e n=p—p; and

e 1 =0; and

o n=(d-1)B%
we have

8\I/d,l
dp

(ﬁ)pa l77) < 07 V(Pvﬁ) € Rﬂ,Q'
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Hence
2 2.
pnax Vai(B, p,1n) = T Vai(B, p,In) = Wau(B, 67, 1(d —1)57);
where the last identity follows from Lemma 7.1 and the fact that all the derivatives at
Vai(8,p,0) at (p,0) = (8% (d — 1)I8?%) vanish. It is straightforward to check that the
maximizer in Rgo for ¥y, is unique by the strict negativity of the derivatives.
Let Rg1 C Ra be the region in the (p,n)-plane bounded by

p = 3% and

n =0; and

n = dB* — p; and
n=28-p—Lif2p—1>p%

Then by Lemma 7.1 and the fact that all the derivatives at W4;(3, p,0) at (p,0) = (82, (d —
1)I/3?) vanish, we obtain

max  Wqy(8,p,0n) = V(8,52 1(d—1)8%);
(pmERZ 1

and that the maximizer in Rg; for ®4,(5, p,In) is unique.
Let

Rgs = {Rp\[Rp, URpgal} N {(p,n):det H(B,p,nl) >0}
Rga = {Rp\[Rp, URpal} N {(p,n):det H(B,p,nl) < 0}.

For any point (p,n) € Rg 3, there exists a line segment joining (52, (d — 1)8%) and (p,7)
such that every point along the line segment is in Rg 3. Note that det H > 0 at each interior
point of the line segment, therefore the second order directional derivative of Wg;(8, p,In)
along the line segment is strictly negative at each interior point. Since the first order
derivatives of Wq;(8, p,In) at (82, (d — 1)3?) are 0, the first order directional derivative of
U,1(8,p,1n) along the line segment is strictly negative at each interior point. Hence we
have

\Ild,l(ﬂvp’ lT/) < \I’d,l(ﬂaﬁ2v l(d - 1)52% V(,O, 77) € Rﬁ,?) \ {/827 (d - 1)52}

Now we consider Rg4. When the Hessian determinant is negative, Wq;(5,p,0) as a
function of (p, #) cannot achieve a local maximal value at an interior point; it cannot achieve
the global maximal value in Rg along the boundary satisfying det H = 0 either, since this
is also the boundary of the region det H > 0 where the function is strictly concave, and the
maximal value in det H > 0 is already achieved at the unique interior point (52,1(d —1)3?).
Therefore if a global maximal value of W4;(3,p,0) in Rg is achieved when (p,0) € Rg N
{det H < 0}, then it must be achieved along the boundary 6 = (8 — p); see Figure 3.1.
More precisely, the only possible candidate for the global maximal value when det H < 0 is

max v , 0, LB —
el d1(8,p,1(B = p))



44 ZHONGYANG LI

Let Ty, 8(p) be defined as in (3.36). As in (3.36), we obtain that p € [ps, 3), Taip(p) >0,

dp?
and the identity holds if and only if p = p5. Therefore %ﬁ(p) is monotone increasing when

p € [ps, 3). Then

T < max{T T .
el a1,8(p) < max{Tay5(ps), Ta1,5(58)}

But (ps, 8 — ps) € Rg 3, hence

Taa5(ps) < Wai(B,5°,1(d—1)8).
Moreover, (3,0) € Rg 2, hence

Taip(ps) < Way(B, B2,1(d —1)5%).

Then the lemma follows. O

Lemma 7.4. Letd>3,1>2 and B € (0,%). Assume (7.3) and (5.20) hold. If

(75) st (1 - CH)
d =1 —1

Then (p,0) = (8%, (d—1)18?) is the unique global mazimum for ¥ (8, p,0) when (p,0) € Rs.

Proof. 1t is straightforward to check that (7.5) implies (7.4). Then the lemma follows from
Lemma 7.3. O

Proof of Theorem 1.1(3c). Theorem 1.1(3c) follows from the similar arguments as the
proof of Theorem 1.1(3b). O

8. MAXIMAL MATCHING
In this section, we discuss the implications of our results on maximal matchings.

Proposition 8.1. Let 5 € (0, é) Assume fi (%) < 0. Define

Inm

8.1 K, :=mby+ —————
Then

. 1

lim EZg, =

m—00 271'50(1 — dpo)
Proof. By (2.7), we obtain
EZy = 1 emfbd,z (50+72m41>2l;”(50)) <1 Lo <(1n m)?))
V2mBo(1 — dBo)v/m m

Using Taylor expansion at 3y to approximate ®4; (ﬁo + Wm@o)), the lemma follows. [J
d,l

Proposition 8.2. Let § € (0, é) Assume f; (é) < 0. Let Ky, be given as in (8.1). Let
Z>K,,+c be the total number of matchings containing at least K, + C hyperedges in a
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random reqular graph G, 41 € na1. Then
lim EZ>k,,+c =0,
C—o0 -
where the convergence is uniform for all sufficiently large m > C.

Proof. Let
5lnm

29,(Bo)’
Note that Cp, > 0 since ®4;() is strictly decreasing in (B*, é), and [y € (B*, é) Then
EZ>k,,+c = W1+ Wa;

Cp = —

where
Wy = Z EZk,, +s; Wy = Z EZk,, +s-
C<6<Cpm—1 6>Cm
By (2.7) we obtain

1 m®gq; (504‘27”; m(Bo) ( ln m)2>>

e
2mBo(1 — dBo)v'm
When ¢ > Cy,, since ®4,(5) is strictly decreasing when 3 € (ﬁ*, é), we have

EZk,,+s < ! em%l mi}nlz;o) ( < )2>>
27 Bo(1 — dfBp)/m
<

1 In 1
T 0o () <
27Tﬁ0(1 — dﬁg)ﬂ”ﬁ m?
Since there are at most m summands in Wy, we obtain Wy < % < %, since m > C.
Again using the Taylor expansion of ®4; at Sy to approximate ®4 (K, + ) we obtain

EZK,.+s

2
W, = 3 1 P1(B0)S <1+O <(lnm) >>
c<s<tn—1 V2mBo(1 — dbo) m
2 @ ,1(Bo)C
< <1+o<(lnm) >> 1 i
m 2mBo(L — dBo) 1 — cPau(Po)
Then the lemma follows since @&71(50) < 0. 0
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