ASYMPTOTICS OF PURE DIMER COVERINGS ON RAIL-YARD
GRAPHS
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ABSTRACT. We study asymptotic limit of random pure dimer coverings on rail yard
graphs when the mesh sizes of the graphs go to 0. Each pure dimer covering corresponds
to a sequence of interlacing partitions starting with an empty partition and ending in
an empty partition. Under the assumption that the probability of each dimer covering is
proportional to the product of weights of present edges, we obtain the limit shape (Law of
Large Numbers) of the rescaled height function and the convergence of unrescaled height
fluctuation to a diffeomorphic image of Gaussian Free Field (Central Limit Theorem); an-
swering a question in [6]. Applications include the limit shape and height fluctuations for
pure steep tilings ([8]) and pyramid partitions ([20, 35, 36, 37]). The technique to obtain
these results is to analyze a class of Mcdonald processes which involve dual partitions as
well.

1. INTRODUCTION

A dimer cover, or perfect matching on a graph is a subset of edges such that each vertex
is incident to exactly one edge in the subset. The dimer model is a probability measure
on the set of perfect matchings (See [21]). The dimer model is a natural mathematical
model for the structures of matter; for example, each perfect matching on a hexagonal
lattice corresponds to a double-bond configuration of a graphite molecule; the dimer model
on a Fisher graph has a measure-preserving correspondence with the 2D Ising model (see
[14, 31, 25]).

Just as in the structure of matter different molecule configurations have certain probabil-
ities to occur depending on the underlying energy, mathematically we define a probability
measure on the set of all perfect matchings of a graph depending on the energy of the dimer
configuration, quantified as the product of weights of present edges in the configuration.
The asymptotical behavior and phase transition of the dimer model has been an interesting
topic for mathematicians and physicists for a long time. A combinatorial argument shows
that the total number of perfect matchings on any finite planar graph can be computed by
the Pfaffian of the corresponding weighted adjacency matrix ([18, 16]). The local statis-
tics can be computed by the inverse of the weighted adjacency matrix ([19]); a complete
picture of phase transitions was obtained in [23]. Empirical results shows that in large
graphs, there are certain regions where the the configuration is almost deterministic, i.e.
one type of edges have very high probability to occur in the dimer configuration. These
are called “frozen regions”, and their boundary are called “frozen boundary”. When the
mesh size of the graph goes to 0 such that the graph approximates a simply-connected
region in the plane, the limit shape of height functions can be obtained by a variational
principle ([10]), and the frozen boundary is proved to be an algebraic curve of a specific
type called the cloud curve ([22]). It is also known that the fluctuations of (unrescaled)
dimer heights converge to the Gaussian free field (GFF) in distribution when the boundary

satisfies certain conditions ([19, 26]).
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In this paper, we investigate perfect matchings on a general class of bipartite graphs
called rail-yard graph. This type of graphs were defined in [6], and the formula to compute
the partition function of pure dimer coverings on such graphs was also proved in [6]. The
major goal of the paper is to study the limit shape and height fluctuations of pure dimer
coverings on such graphs. Special cases of rail-yard graphs include the Aztec diamond
([12, 13, 17, 9]), the pyramid partition ([36]), the steep tiling ([8]), the tower graph ([5]),
the contracting square-hexagon lattice ([7, 29, 27, 24]) and the contracting bipartite graph
([28]). Pure dimer coverings on rail-yard graphs are in one-to-one correspondence with
sequences of partitions, and the probability distribution of these sequences of partitions
corresponding to that of pure dimer coverings forms a generalized version of McDonald
processes. The observables of Mcdonald processes have been extensively studied in [3, 4],
and applied to study the asymptotics of lozenge tilings in [11, 1]. Unlike [11, 1], the
Mcdonald processes used to study dimer configurations on rail-yard graph involve dual
partitions as well. Such Macdonald process can also be obtained from the Macdonald
processes defined in [3, 4] by a specialization, which is a homomorphism from the algebra
of symmetric polynomials to C, but not a function evaluation. As a result, we obtain the
Law of Large Numbers and the Central Limit Theorem for perfect matchings on a large
class of graphs, including the well-known pure steep tilings and ([8]) and pyramid partitions
(120, 35, 36, 37]).

The organization of the paper is as follows. In Section 2, we define the rail-yard graph,
the perfect matching and the height function, and review related technical facts. In Section
3, we discuss a class of Mcdonald processes related to the probability measure of perfect
matchings on the rail-yard graphs. In 4, we compute the moments of height functions
of perfect matchings on rail-yard graphs by computing the observables in the generalized
Mcdonald processes. In Section 5, we study the asymptotics of the moments of the random
height functions and prove its Gaussian fluctuation in the scaling limit. In Section 6, we
prove an integral formula for the Laplace transform of the rescaled height function (see
Lemma 6.1), which turns out to be deterministic, as a 2D analog of law of large numbers.
We further obtain an the explicit formula for the frozen boundary in the scaling limit. In
Section 7, we prove that the fluctuations of unrescaled height function converges to the
pull-back Gaussian Free Field (GFF) in the upper half plane under a diffeomorphism from
the liquid region to the upper half plane (see Theorem 7.7). In section 8, we discuss specific
examples of the rail-yard graph, such that the limit shape and height fluctuations of perfect
matchings on these graphs can be obtained by the technique developed in the paper; these
examplse include the pure steep tilings and pyramid partitions. In Apendixes A and B, we
include some known technical results.

2. BACKGROUNDS

In this section, we define the rail-yard graph, the perfect matching and the height func-
tion, and review related technical facts.

2.1. Weighted rail-yard graphs. Let [,r € Z such that [ < r. Let
[L.r] :=[l,r]NZ,
i.e., [l..r] is the set of integers between [ and r. For a positive integer m, we use
[m] :={1,2,...,m}.

Consider two binary sequences indexed by integers in [I..r]
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FIGURE 2.1. A rail yard graph with LR sequence a = {L, R, R, L }and sign
sequence b = {+,+,—,—}. Odd vertices are represented by red points,
and even vertices are represented by blue points. Dark lines represent a
pure dimer covering. Assume that above the horizontal line y = 4, only
horizontal edges with an odd vertex on the left are present in the dimer
configuration; and below the horizontal line y = —4, only horizontal edges
with an even vertex on the left are present in the dimer configuration. The
corresponding sequence of partitions (from the left to the right) is given by
0 <(2,0,...) <" (3,1,1,...) =" (2,0,...) = 0.

e the LR sequence a = {a;,a41,...,a,} € {L, R}
e the sign sequence b = (b, b1, ...,b) € {+, =},

The rail-yard graph RY G(l,r, a,b) with respect to integers [ and r, the LR sequence a and
the sign sequence b, is the bipartite graph with vertex set [21 — 1..2r + 1] X {Z + %} A
vertex is called even (resp. odd) if its abscissa is an even (resp. odd) integer. Each even
vertex (2m,y), m € [l..r] is incident to 3 edges, two horizontal edges joining it to the odd
vertices (2m — 1,y) and (2m + 1, y) and one diagonal edge joining it to

the odd vertex (2m — 1,y + 1) if (am, by) = (L, +);

the odd vertex (2m — 1,y — 1) if (am, by) = (L, —);

the odd vertex (2m + 1,y + 1) if (am, bm) = (R, +
the odd vertex (2m + 1,y — 1) if (am, by) = (R, —

See Figure 2.1 for an example of a rail-yard graph.

);
)

Am;s
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The left boundary (resp. right boundary) of RY G(l,r,a,b) consists of all odd vertices
with abscissa 2l —1 (resp. 2r+1). Vertices which do not belong to the boundaries are called
inner. A face of RYG(l,r,a,b) is called an inner face if it contains only inner vertices.

We assign edge weights to a rail yard graph RY G(l,r,a,b) as follows:

e all the horizontal edges has weight 1; and
e each diagonal edge adjacent to a vertex with abscissa 2¢ has weight x;.

2.2. Dimer coverings and pure dimer coverings.

Definition 2.1. A dimer covering is a subset of edges of RY G(l,r,a,b) such that
(1) each inner vertex of RY G(l,r,a,b) is incident to exactly one edge in the subset;
(2) each left boundary vertex or right boundary vertez is incident to at most one edge
in the subset;
(8) only a finite number of diagonal edges are present in the subset.
A pure dimer covering of RY G(l,r,a,b) is dimer covering of RYG(l,r,a,b) satisfying the
following two additional conditions
e cach left boundary vertex (21 — 1,y) is incident to exactly one edge (resp. no edges)
in the subset if y > 0 (resp. y <0).
e cach right boundary vertez (2r+1,y) is incident to exactly one edge (resp. no edges)
in the subset if y < 0 (resp. y > 0).

See Figure 2.1 for an example of pure dimer coverings on a rail yard graph.

For a dimer covering M on the rail-yard graph RY G(l,r,a,b), define the associated
height function hy; on faces of RYG(l,r,a,b) as follows. We first define a preliminary
height function hj; on faces of RYG(l,r,a,b). Note that there exists a positive integer
N > 0, such that when y < —N, only horizontal edges with even vertices on the left are
present. Fix a face fy of RYG(l,r,a,b) such that the midpoint of fy is on the horizontal
line y = —N, and define

ha(fo) = 0.

For any two adjacent faces fi and fy sharing at least one edge,

e If moving from fi to fa crosses a present (resp. absent) horizontal edge in M with
odd vertex on the left, then hps(f2) — hasr(fi1) = 1 (resp. har(f2) — har(f1) = —1).
e If moving from f1 to fa crosses a present (resp. absent) diagonal edge in M with
odd vertex on the left, then har(f2) — har(f1) = 2 (resp. har(f2) — har(f1) = 0).
Let hg be the preliminary height function associated to the dimer configuration satisfying
e no diagonal edge is present; and
e cach present edge is horizontal with an even vertex on the left.

The height function hj; associated to M is then defined by
(2.1) har = has — ho.

Let m € [l..r]. Let x = 2m — % be a vertical line such that all the horizontal edges and
diagonal edges of RYG(l,r,a,b) crossed by x = 2m — % have odd vertices on the left. Then

for each point (2m — %, y) in a face of RYG(l,r,a,b), we have

1 1 1
(2.2) har (2m — 2,y> =2 [N};M <2m— 2,y> + Ny <2m— 27y>] ;
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1
2
T =2m — % below y, and N, ,, (2m — %, y) is the total number of present diagonal edges

where N, M (2m — y) is the total number of present horizontal edges in M crossed by
in M crossed by x = 2m — % below y. From the definition of a pure dimer covering we can
see that both N, ,, (2m — %, y) and N, (Zm — %, y) are finite for each finite y.

Note also that x = 2m + % is a vertical line such that all the horizontal edges and
diagonal edges of RYG(l,r,a,b) crossed by x = 2m + % have even vertices on the left.

Then for each point (2m + %, y) in a face of RYG(l,r,a,b), we have

1 1 1
(2.3) hay <2m+ 2,y> =2 |:Jh_,M <2m+ 2,y> —Nd_,M <2m+ 2,y>} ;

where Jh_’ M (2m + %,y) is the total number of absent horizontal edges in M crossed by
r=2m+ % below y, and Nam (2m + %, y) is the total number of present diagonal edges
in M crossed by x = 2m + % below y. From the definition of a pure dimer covering we can
also see that both Y, (2m + %, y) and N;M (2m + %, y) are finite for each finite y.

2.3. Partitions. A partition is a non-increasing sequence A = (\;);>o of non-negative
integers which vanish eventually. Let Y be the set of all the partitions. The size of a
partition is defined by

A =D\

i>1
Two partitions A and p are called interlaced, and written by A > p or g < A if
AL 1> > o> Ag. ..

When representing partitions by Young diagrams, this means A/pu is a horizontal strip.
The conjugate partition A of \ is a partition whose Young diagram Y is the image of the
Young diagram Y) of A by the reflection along the main diagonal. More precisely

No={j>0:) >4}, Vi > 1.
The skew Schur functions are defined in Section 1.5 of [30].

Definition 2.2. Let A\, p be partitions. Define the skew Schur functions as follows

ey,
S\p = det (h/\ifﬂj*iﬂﬁ)i,j:l

Here for each r > 0, h, is the rth complete symmetric function defined by the sum of all
monomials of total degree v in the variables x1,x2,.... More precisely,

hr = E L Ly * * T4,
1<i1 <ia<...<ip

Ifr <0, h, =0.
Define the Schur function as follows

S\ = S)\/@.

For a dimer covering M of RYG(l,r,a,b), we associate a particle-hole configuration to
each odd vertex of RYG(l,r,a,b) as follows: let m € [l..(r + 1)] and k € Z: if the odd
endpoint (2m —1,k+ %) is incident to a present edge in M on its right (resp. left), then
associate a hole (resp. particle) to the odd endpoint (2m - 1,k+ %) When M is a pure
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dimer covering, it is not hard to check that there exists N > 0, such that when y > N,
only holes exist and when y < —N, only particles exist.

We associate a partition A(M™) to the column indexed by m of particle-hole configura-
tions, which corresponds to a pure dimer covering M adjacent to odd vertices with abscissa
(2m — 1) as follows. Assume

M, M,
A(M7m) = ()\g m)7 )‘é m)a .. ')a
Then for ¢ > 1, /\l(-M’m) is the total number of holes in M along the vertical line x = 2m —1
below the ith highest particles. Let [(A(™) be the total number of nonzero parts in the
partition ABMm)

We define the charge ¢(™™) on column (2m — 1) for the configuration M as follows:

(2.4) ™M™ — pumber of particles on column (2m — 1) in the upper half plane

—number of holes on column (2m — 1) in the lower half plane

The weight of a dimer covering M of RYG(l,r,a,b) is defined as follows
w(M) = Hx?i(M),
i=l

where d; (M) is the total number of present diagonal edges of M incident to an even vertex
with abscissa 2.

Let AW, A\"+1) he two partitions. The partition function Z\1) A1) (G, x) of dimer cov-
erings on RY G(l,r, a,b) whose configurations on the left (resp. right) boundary correspond
to partition A() (resp. )\(T“)) is the sum of weights of all such dimer coverings on the graph.
Given the left and right boundary conditions A®) and A"+, respectively, the probability
of a dimer covering M is then defined by

M)
25 Pr(M A(l),)\(r"'l) = wl .
( ) ( | ) Z)\(l)})\(T“"l) (G7 g)

Note that pure dimer coverings have left and right boundary conditions given by
(2.6) 2D =\ — g

respectively.

Let f be an inner face of RYG(l,r,a,b). Let M be a dimer covering of C. If exactly
half of the edges bordering f are present in M, we can obtain another dimer covering M’
from M, such that M’ and M coincide on each edge not bordering f; while for an edge
bordering f, it is present in M’ if and only if it is absent in M. In particular, M and M’
have the same configuration on the left and right boundary. The operation of replacing M
by M’ is called a flip of f; see Figures 2.2-2.5, where odd vertices are represented by red
dots, even vertices are represented by blue dots.

Then we have the following lemma.

Lemma 2.3. Let M be a pure dimer covering on the rail-yard graph RY G(l,r,a,b). Then
MM — 0 Ym e [I..(r + 1)].

Proof. Let My be the pure dimer covering on RY G(l,r,a,b) such that

e all the present edges in the upper half plane are horizontal with odd vertex on the
left; and
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Ficure 2.3. Flip of dimer configurations on a face between two columns
(L—I_?L )? (L+ )7 (L+’ R+)7 (L+’ R )'

e all the present edges in the lower half plane are horizontal with even vertex on the
left.

It is straightforward to check that in the particle-whole representation for any column in
My, the upper half plane only has holes, while the lower half plane only has particles. By
(2.4) we obtain

Mom) — o Ym e [l.(r+1)].

By Section 2.3 of [6] (see also [33]), any pure dimer covering M of RYG(l,r,a,b) can be
obtained from My by finitely many flips. The particle-hole configuration is associated to
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F1cURrE 2.4. Flip of dimer configurations on a face between two columns
(R+,L+), (R+,L-), (R+,R-), (R+, R+).
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FiGure 2.5. Flip of dimer configurations on a face between two columns

5
(R—,L+), (R—,L—), (R—,R+), (R—,R-)

each odd vertex. The particle-hole configuration for each type of flips in Figures 2.2-2.5
are shown as in Figure 2.6, where particles are represented by black dots, while holes are
represented by circles.

Each local particle-hole configuration in Figure 2.6 consists of two adjacent rows. The
following cases might occur

e both rows are in the upper half plane; or
e both rows are in the lower half plane; or
e the top row is in the upper half plane and the bottom row is in the lower half plane.
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FIGURE 2.6. Flip of particle-hole configurations on a face between two
columns L— and L— corresponding to Figure 2.2(1)(3), Figure 2.2(2), Fig-
ure 2.2(4), Figure 2.3(1)(2), Figure 2.3(3), Figure 2.4(1)(2) and Figure
1.4(1)(2), Figure 2.4(3) and Figure 1.4(4), Figure 2.4(4) and Figure 1.4(3)

It is straightforward to check that for each one of the 3 cases above, and each type particle-
hole configuration change corresponding to a specific type of flip in Figure 2.6, the charge
™™ for all m € [I..r + 1] remains unchanged. Then for any pure dimer covering M,

C(M,m) (M07m) — 0

=c
Then the lemma follows. O
2.4. Asymptotic height function. Let M be a dimer covering of RYG(l,r,a,b). Let

Yy (M:m) he the ordinate of the sth highest particle along the line 2 = 2m — 1 for the pure
dimer covering M. Then by (2.4) we obtain

Assume klogt < 0, we have
o0 1 00 dekvlogt
2.8 h thvdy = h d

_ 1 /oo ekylogtth(x’y)dy
klogt J_ dy
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Let 2 = 2m — 4. From (2.2), we obtain

dh (2m 1 y) [(AMm)y

M -2

(2.9) dy 2 =21|1-— Zl 1[y(i,M,m)_%y(i,M,m)_i_%](y)
1=

Here for A C R, 14(y) : R — {0,1} is the indicator function for the set A, i.e.,

{1 if y € A;

1 —
Aly) 0 otherwise.

By (2.7) we obtain for 1 < i < [((AM™)
(2.10) y @Mam) % LA (0w,
Let
Bar(m) = YU+ %;
Note that below Bjs(m), only particles are present along the vertical line y = 2m — 1,
hence we have

dha(2m — 1, y)
dy
M,m)

=0, Vy<BM(m)

Moreover, since the charge ¢! = 0, there are exactly the same number of particles on
the upper half plane and holes in the lower half plane along the line x = 2m — 1, we obtain

—Bpy(m) = number of particles at (2m — 1,y) with By/(m) <y <0
+number of holes at (2m — 1,y) with By/(m) <y <0
= number of particles at (2m — 1,y) with By(m) <y <0
+number of particles at (2m — 1,y) with y > 0
(2.11) = ((AMm)y,
Then from (2.8) (2.9) we obtain

/ hoa (2, y)t™ dy

— o
(M,m)
= gt o s [ I(AZ ytentm 1yt (1)
klogt /g, (m) klogt Jp,,m) = [y & Mm) =g,y dm)43]

otk Bar(m) 2 ) i\ M 1 i, M 1
_ 4 Z k(YO L Dy logt k(Y amhi)logt)
(klogt)?  (klogt)?

By (2.10), we obtain
l()\(l\/l,m))

> 2tk’(BA4(m)+l(>\(M‘m))) (M,m) (M,m) (M,m)_;
/oo (klogt) g
[(AM,m)
(212) = 2| MO g gy | > )t’f(AEM"”’%(M’m’—iH)
' ~ (klogt)? ’

i=1
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where the last identity follows from (2.11). In particular if M is a pure dimer covering, we
have

e’} 9 l(/\(M,m))

— (M,m) _ (M,m)_i
/ ho (2, y)t™dy - = Flog 12 e L D s | .
- i=1

The bosonic Fock space B is the infinite dimensional Hilbert space spanned by the
orthonormal basis vectors |\), where A runs over all the partitions. Let (A| denote the dual
basis vector. Let x be a formal or a complex variable. Introduce the operators I'r (z),
Iy (z), Try(x), Tr—(z) from B to B as follows

Try(@)d) = > e Hin Tri@)n) = D e

B=<A W<\
T ()| A) =Y al= Wiy Tr(2)n) = > 2P,
pw=A w=N

Such operators were first studied in [32] for random partitions.

Lemma 2.4. Let a1,a2 € {L,R}. We have the following commutation relations for the
operators I'q, +, L', +.

FaQ,f(mQ)Fapr(xl)
Fa1,+(x1)ra2,—(x2) = 1

if a1 = ay
(14 2122)Tay— (22)Tay 4+ (21) if a1 # ag.
Moreover,
Loy p(21)Tayp(2) = Layp(22)Tay p(21);
for all ay,as € {L,R} and b € {+,—}.
Proof. See Proposition 7 of [6]; see also [37, 2]. O

Given the definitions of the operators I'y () with a € {L, R}, b € {+, —}, it is straight-
forward to check the following lemma.

Lemma 2.5. The partition function of dimer coverings on a rail yard graph G = RY G(l,r,a,b)
with left and right boundary conditions given by XD XD respectively, is
(2.13)  Zyw pyoen (Gsz) = AP, ()T (@141) - Tayp, () ]ATTD)

ar1bi41
Corollary 2.6. The partition function of pure dimer coverings can be computed as follows:
(2.14) Zpo(Giz) = 11 Zij

lSi<jST‘;b¢:+,bj:—

where

(2.15)

1+ TiT; if a; 75 a;
e if a; = a;
Proof. The corollary follows from Lemma 2.5 by letting A() = X0+ = . it also appears
in Proposition 8 of [6] for (2.13); and Theorem 1 of [6] for (2.14). O

Remark. The partition function Z(G;z) is always well-defined as a power series in z.
When we consider the edge weights z;’s to be positive numbers, to make sure the conver-
gence of the power series representing the partition function, we need to assume that
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e For any i,j € [l.r], i < j, a; = aj and b; = +, bj; = — we have
TiT; < 1.

However, when considering the corresponding probability measure, we do not necessarily
need this assumption.

2.5. Piecewise Periodicity of a¢ and b. We shall assume that the sequences a and b
describing the structure of the graph satisfy the following piecewise periodicity assumption.

Assumption 2.7. Let € > 0 be a small positive parameter.
(1) Let 1) < 1(9) be the integers representing the left and right boundary of the rail-yard
graph depending on € such that
lim el = 1 < 70 = Jim (9

e—0 e—0
so that the scaling limit of the sequence of rail-yard graphs {eRY G(1(9), r(e),g(e),b(e))}e>o,
as € — 0, has left boundary given by x = 219 and right boundary given by x = 2r©
(2) Let n be a positive integer independent of €. Assume for each € > 0, the sequence
a'9 with indices in in (l(ﬁ), T‘(E)) 1s n-periodic. More precisely, for any integers i, j
satisfying
(2.16) 19 <i<j <o, and [(i—7j) modn]=0,

then
() ()

a; :aj .

Moreover, assume that for each € > 0,

L::{ie[n}:age):L}; Nr:={i€n]: (E)ZR}.

’L

then Ny, and Ng are independent of €.
(8) Assume for each € > 0, there exist integers

1) = v((f) < vge) <. <9 =l

such that for each p € [m], the sequence b() with indices in in <v](f)1, (6)) s n-

periodic. More precisely, for any integers i,j satisfying
(2.17) W <i<j<old,  and  [(i—j) modn]=0,
then
(&) _ 3(9).
b’ = bj6 ;
Here m is a positive integers independent of e.

(4) There exist
0=19=V<Vi<...<Vp=rO,

such that
l%ev() Vp, Vp € [m)].
(5) For each p € [m], j € [n], a€ {L,R}, b€ {+,-},
 Jwerld + 10010z + 5} 0y = a,b, = b}
. NONINC) = Cabjp
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Remark 2.8. Under Assumption 2.7, it is straightforward to check that for each fized
p€[m] and j € [n],

CLH‘J,P + CL’_ij) + CR,"‘:]‘:P + CR,—J‘J’ - -

Moreover, exactly one of Cr +. jpsCL,—.j.p» CR+,j.ps CR—jip 5 %, and all the other three are
0, by Assumption 2.7(2).

Assumption 2.9. Suppose that Assumption 2.7 holds. Suppose that the weights of diagonal
edges also depend on €. More precisely, for integer i,j satisfying (2.17) and p € [m], let k
be the unique positive integer satisfying

k € [n]; and [(k —i) mod n]=0.
then there exists 11, ..., T, independent of € and p, such that
(1) if 0 =\ = +, then

(O _ g=li)eg(e)

Lj
and

(0,p)

lim €0 =@, =Ty

e—0

(2) if b =\ = —, then

'7]6)62:(6)

xg-e) = e(j_i)fxl(e).
and

. . 1
11_1}(1) e—(z—k)sxl( ) — x](;)vp) — ?
€ k

3. McDONALD PROCESSES

In this section, we discuss a class of Mcdonald processes related to the probability
measure of perfect matchings on the rail-yard graphs. The major characterstic of the
processes defined here is that the processes here involve dual partitions as well, which, as
we will see, can also be obtained from a specialization of the Macdonald processes defined
without dual partitions (see [3],[4]) by a specialization that is not a function evaluation,
when the parameters satisfy ¢ = t.

Let G = RYG(l,7,a,b) be a rail-yard graph. Let (AMD XML -0 A(Mr) A (Mor+1))
be the sequence of partitions corresponding to a dimer covering M on GG. By Lemmas 2.4
and 2.5, we obtain for ¢ € [[..7]

(1) If (as,b;) = (L, —), AOLHD < A(Mi),
(2) If (a5, b;) = (L, +), AOLHD o A(M),
(3) If (aj, by) = (R, =), [AMAHD] < [\OLD;
(4) Tt (a by) = (R, +), O] = AOLIY
Given Definition 2.2, we can express the probability of a dimer covering M conditional
on boundary the left and right conditions A() and A"+1) respectively, as defined by (2.5),
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as follows:

1
3.1) Pr(M[AD A0+ .=
( ) ( ’ ) ZA(1>’)\(T+1)(G’$)

H S)\(J\/I,i)/)\(lw,iJrl) (.’L‘z) H S/\(M,j+1)/)\(M,j)(xj)
i€ll..r],(ai,bi)=(L,—) jet.r),(as,bi)=(L,+)

X H S[)\(M,i)]//[/\(]\l,i-&—l)}/(xi) H S[)\(]w,j+l)]//[)\(M,j)}/(x]‘)
ie[l"r}v(airbi):(va) ]E[lr},(a“bl)z(R,Jr)
Now we define a generalized MacDonald process, which is a formal probability mea-

sure on sequences of partitions such that the probability of each sequence of partitions is
proportional to a sum of products of skew MacDonald polynomials.

Definition 3.1. Let
A = (A(l)’A(lJrl)’.”’A(r)vA(r+1))‘

B = (BO B BM g+l

)

be 2(r — 1 + 2) set of variables, in which each AW or BU) consists of countably many
variables. Let P = {L, R} be a partition of the set [l..r], i.e.
(1) LUR = [l..r]; and
(2) LOR = 0.
Define a formal probability measure on sequences of (r — 1+ 2) partitions

AO N A A
with respect to P, A and B and parameters q,t € (0,1) by
(3.2) MPa B.pg:(AD, .., ATHD) o

[T @0 awn (A9, BTV q,0) | T @poyporop (A9, BUTY;g,1)
ieL JER
where for two partitions A\, u € Y, and two countable set of variables A, B,

Un (A, B; g, t) = Pryu(A54,6)Qu (B g, t).
veY

Oy (A, Big,t) = > Qu(Ast,q) Py (Bst,q)
veY
See Section A for definitions of MacDonald polynomials Py, Qx, Py/., @x/pu-

Remark 3.2. In terms of the scalar product as defined in (A.3), we also have
\I/)\,#(A,B;q,t) = (P\(4,Y;q,1),Q.(Y,B;q,t))y,
Dy (A, B) = (Pu(Y, Bit,q), Qx(A, Y5 t,9))y
where Y is a countable set of variables.
Lemma 3.3. Consider dimer coverings on the rail-yard graph with probability measure con-
ditional on left and right boundary conditions XY and N1 | respectively, given by (3.1).

Then the corresponding sequences of partitions form a generalized MacDonald process as
wn Definition 3.1 with
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(1) L={ie[l.r]:a;=L} and R={j € [l..r] : a; = R}; and
(2) Fori e |l..r],

(a) if by = —, then AW = {z;}, BU+Y) = {0};

(b) if b; —+ then AW = {0}, BO+D) = {z,};
(3) a=t;

conditional on fized \O and A"V on the left and right boundaries, respectively.

Proof. Note that when ¢ = t and each one of A® and BU*Y consists of a single variable,

\I//\(i)7)\(i+1 (A(l) Bl+D). (4, 1) Z‘SA )/V 8)\(1+1 /V(B(z'+1))
veY
When b; = —,
1 if v = A0+,
0 otherwise.

sx+1,(0) = {

and therefore
Wy a0 (@3, 058, 8) = syw) /aan (27)
Similarly, we obtain that when b; = —,
Py a0 (6, 058,8) = sy /a6 ()3
and when b; = +,
i aa+0 (@i, 058,8) = syarn nm (@) = Py zarn (24,052, 7)

It is straightforward to check that when all the assumptions of the lemma hold, the proba-
bility measure of the formal MacDonald process, defined by (3.2), is exactly the probability
measure given by (3.1). O

4. MOMENTS OF RANDOM HEIGHT FUNCTIONS

In this section, we compute the moments of height functions of perfect matchings on
rail-yard graphs by computing the observables in the generalized Mcdonald processes.
Let A € Y be a partition and ¢, ¢ € (0,1) be parameters. Let

1)

(4.1) Ye(Xiq t) = (1 —t7%) Z k(D kO
i=1
Define
Wi — 4
(4.2) H(W,X;q,t H H
iSlaex T q:nj

We have the following lemma.

1 1
Nt A=, =

Lemma 4.1.
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Proof. For A€ Y, q,t € R, let f\(q,t) be defined as in Lemma A.13. By Lemma A.13, it
is straightforward to check that

1 1 11
wNit,g) =1+ fu (5 5 ) =1+ A ot ) = (X7 )
q q qt

Then the lemma follows. ]

Lemma 4.2.

EMPA‘B‘P;q,f,\A(l)=>\(r+1>=® H ’yli(A(i)§Q7t)
i€(l+1..7]

q=t

2 7{ f o (WO, W) H DWW w(t, £, a )V HIWD, AD; w(t, £, a,))
1<J31,J €[ l+1 7]

=[+1..7]

x ( 11 (H(W(i),(—1)5"'iv“:“1A(j);w(t,t,ai)))(il) o )

i<jii,j€[l+1..7]

Iy, q B+ (AG) w (4)
X H I A J((B (i+1) 5((t + a.)W(iz)
1<g;i,5€[L..7] Qi aj ) y Uy O

where the expectation is with respect to the probability measure on pure dimer configurations
of RYG(l,r,a,b) as defined in (2.5), (5.1); and

,t if a; — L
(43) w(%ta ai) = {((ql )l :

T 5) ifa; =R
—1
q If a; = L
4.4 ta;) =
and
a wjzi_l)g .
HzieZ ijEW (1—t Lo 271)(1 twjzfl) if c=d
1+tw;z 12 .
Tc,d(Z7 W) = HzZGZ HwJEW (1+t2( ])(1—&-)11)]2 T ifc=Landd=R
(1+t Lup;z1)2 . . B
HZ.LEZ ijEW (14t~ QwJZ 5(1+w]2 1) ife=Rand d=L.

where [W®| = 1;, and the integral contours are given by {CijYicls1.0,se)1,) such that
(1) Ci s is the integral contour for the variable wgi) e W,
(2) if a; = L, C; s encloses 0 and every singular point of
4 , (—1)ies
[T (HWO, (1)t ab;e, ) ,
J€fi-r]
but no other singular points of the integrand.
(3) if a; = R, C; s encloses 0 and every singular point of
. ) 1)0eias !
[T (2w, (ppeenstaws )0
jEi..r]

but no other singular points of the integrand.
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(4) the contour C;; is contained in the domain bounded by min{t, %}CZ j+ whenever
(i,7) < (¢,7") in lexicographical ordering;

H(W, X;q,t) is given by (4.2), and D(W;q,t) is given by (A.6).
Proof. By Lemma 4.1, we obtain

EMIP’AyB’P;qyt‘)\(l):)\(rJrl):@ H ’Yl ’q7 )
L i€[l+1..7] =t
= E 11 (AD; g, ¢) I1 Ol
- MP A, B P, AD=A+D =0 ' M, 34, ' V1 - p
Li€[l+1.r]nL i€ll+1..7]NR ot
Recall that the Macdonald polynomials satisfy (See Page 324 of [30])

Al
43 Ran=n(xig)s atten=(1) a(xl])

We obtain

i a1 11
EMPA,B,p;q,t\/\(U:)\(Hl):@ H ’Yli()\( )§ qt) H Vi ([)\( )} ) e )
i=[l41..7NL = q

i=[l+1..7]NR

) { 11 %(A(“;q,t)][ I1 %([A(i)}/%i’l)]
AD L ACHD Y |i=(i41r]ne o= q

q=t

I+1..7]NR
X M]PA B,Pq, t()\() )\(T+1)|)\(l _ )\(r+1) o @)

q=t

A1 11
Vi ( A(l) ) )
|:i—[l+11_.[.r]ﬂ72 l |: :| t q

X H<P/\(i)(A() v 1¢,1), Qx +1>(Y() B, q,t)>y<i)]
ieL

1

-z X [ T w00

AC+HD A ey |i=[l+1..7]NL

.....

[H@ww (A(”,Y(i);t,q) , Py (Y“),B(””;t,q)>y<i>]
i€R
where for each 7, Y is a countable collection of variables; and

- ¥

A(+1) A(M ey

,,,,

g=t A=A+ =)

H<P)\(l) (A( 1 74, )7 Q/\(i+1) (Y(l)a B(l+1), q, t)>Y(i)]
€L

1€ER

lH<Q[A(i)]’(A(i)7Y(i);tvq)a Py (Y, BUH);LQ»WO]

G=t XD =X+ =@
For i € [l 4+ 1..r], let

Z)\(i)eY’Yli()‘(i);q’ )P)\(i)(A(l) Y 54, )Q)\()( (=1) B(Z)7q7t)

Z)\(i)eY Y ([)‘( )] 5 7) Q/\(i) (Y(Z 1)7 ; q, t)Q[)\(i>]’(A(i)a Y(Z)a t, Q)
Soaoey 1 AD5 g, 1) Py (YD, B(i)‘t,Q)sz’)(A(i)

ifi—1lel,iel
ifi—1el, ieR

Y®;q,1) ifi—1eR,iel
Z)\(i)eY Y ([)\(l)]/a T 7) P[)\( 9] (Y( 1)7 B(l)7t> Q)Q[)\(i)]’(A(i)a Y(’L)a t, Q) ifi—1€eR,ieR

E;
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Moreover,
E P)\(z)(A(l),Y(l);q,t); iflel
l Quop (A0, YD t.q). if1eR
B _ P (Y Y, BUtD: ¢ ¢); ifreR
r Qo) (V) RO, g, 1. ifrec’
When A® = X\0+1) = ( and ¢ = ¢, we have
El - Er+l - 1
Then
. . /
]EMPA,B?,W\,\u):,wﬂ):@ H “Yli()\(l);%t) H Vi ({)\(l)} ;t,Q>
i=[l+1..7r]NL i=[l+1..7]NR q=t
1
= §<El<El+1 o AAE Er g 1)y o)) - )y )y o
q=t, A\D=)\(r+1=p
Let
M ((AD, YD), (0=, BW)) = 3" Py(AD, Y D: 0, ) QA (YD, BY: g,1)
AEY
MLr((AY, YD), (v, BD)) =3 " Qx(y =1, BW; ¢,1)Qx (AV, Y D; 1, q)
AEY
HRL((A(i)7 Y(t))u (Y(i_1)7 B(L))) = Z P)\’ (Y(i_l)a B(i); t? q)P)\(A(l)7 Y(i); q, t)
AEY
Hrr((AD, YD), (v, BO)) =3 " Py (Y=, BO:t,q)Qu (AW, YD:1, q)
AEY

Then for i € [l 4+ 1..r],

B —40 1 (A0 y g a1 a, (A, YE), (VO BOY) - a; = L;
C Py 1 e (A, YD), (VETD, BO)) I a; = R;

where D_; 4 y -1y is the operator defined as in (A.5).
By Lemma A.4, we obtain
I ((AD, Y@y (vy0=D B = 11((A®, y @) (v =1 B0 ¢ 1)
HRR((A(i),Y(i)), (y(i—l)’B(i))) — H((A(i),Y(i)), (y(i—l),B(i));t’ q).
Moreover,
M r((AD Yy @) (y(=D By = HRL((A(i),Y(i)), (y(i—l),B(i)))
= H (1 +uv)
we(AM),Y D) pe(Y (=1 BO)
By Proposition A.3, we obtain for ¢ € [l + 1..r] and ¢ = ¢,
o Ifa;, =L;
E; Mo, a0 (A(i) (l)) (Y y@-b B (i)>)

- N M, o (Y01, B W)
D W(l) A(Z) Y(z) . t A;—1,04 : 9 : ) .
% y{ 7 iq,t ( ) ( ) )7 q, )Hai,l,ai((y(Hl)’ B(’)), q71W(1)) )
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e If a; = R;
E; 1§ PR ( (A(i) Y(’)) (y(l 1) B(i)))

i—1 3 i
w0, L 1 g (o, 40y o), L 1) oo (Y070, BO), W)
, ) t’ q ]_[OLF1 ai((Y(ifl) B(i)) tW(i))’

where each integral contour encloses 0 and all the poles of H(W®, (A® Y ®): ¢ t); more-
over, if

WO = (w wld, )

then along the integral contours |w | < \twﬁ_l\ for each 7 € [I; — 1].

It is straightforward to check that for a;—1,a; € {L, R},
Hai_lm((A(i), Y @), (v =1, By)
= Tl . (A(i),y(i—l)) i | P (A(i)7 B(i)) : Hai—lyai(y(i)’ Y(i—l)) 5 | P (y(i)’ B(i)).
Moreover,
Mo, 0, (YO, BO), W) = Ty, 0, (BY, WO, g, (YO0, W)
H(W(i), (A(i)’y(i));q’t) - H(W(i),Y(i);q,t)H(W(i),A(i);q, t).

Since the integrand in each E; is Ay-;)-projective, by Lemma A.12 we can interchange the
order of the residue and Macdonald scalar product and obtain

I %0 t)]

i=[l+1..7]

Epp, 5 pg. AO =2+ =

q=t

1 [ N oG
= g ( H Hai_hai(A(l)’B(Z))) . %<Fl<-Fl+1 <FT;FT+1>Y(T)>Y(1+1)>y(L)

i=l+1

, N M, . (B, W)
(3). (2) (3). ai—1,a; 5
x(‘ [[ DW@iq,yHW®, A ,q,t)Ha’_ila_(B(i>7q_1W<i))
i=[l+1..7]NL i—1,Q5

11 1 1\ g, 4, (BD, W)
| I W (7') M/(l A( Aj—1,0; )
: ( < q> ( Tt q> I, o (B tW®)
NR T

i=[l+1..7]N

q=t
Moreover for i € [l + 1..r],
o Ifa, =1L,
FZ = Hai—lvai (A(Z)7 Y(lil)) ' Haz 1,44 (Y(’L 1 )
HaFl,az‘ (Y W )
Mo, 0, (Y0 1)»q71W(Z))'

Mo, 1.0, (Y, BY)

xHW®, y®; q,¢)
o Ifa;, =R,

Fy = Hai—hai(A(i)v Yuil)) Ha; 1,0 (Y(i71)7 Y(Z)) ’ Hai—l,ai<Y(i)v B(l))

G 1 1Y gy (YED W)
H (7‘) Y('L). I A;—1,04 ' ) i
X (W s T Haifl,ai(y(lil),tw(z))
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and
E = Fr+1 =1
By Lemmas A.6 and A.7, we obtain

Har_bll'r ((A('r)7w(r))7y(7‘71))

L . Har_lyar(qflww),y(rfl))
Fri= <Fr,Fr+1>Y(r) - Ha,.,l,ar((A(T),W(’“))7Y(’”_1))

Ha,,,71 sar (tW(T)vy(T_l))

Ifa, =L

If a, = R

Then the lemma follows by inductively computing the scalar product

(Fi{Fig1 - (Fr Frga)y o)y o) )y o
and applying Lemmas 4.4 and 4.5. ([l

Remark 4.3. Using similar arguments, we can also obtain the following formula.

. Ry
EM]P’A,B,‘P;q‘t|>\(l):A(T+1):@ [ H 'Wi()‘(l);%t)] [ H A <[)‘(l)] it Q>]
[ INR

i€[l4+1..7r]NL i€[l+1..7N
Tz Jq{ 7{
1<J; 7,]€[l+1 .r]

, , (—1)eina !
( T (VO a9inn) )

1<j;i,J€[l+1..7]

q=t

D.. a/(w(i)’vv(j)))

Mo, 0, (BEFD, = TW0)

% ( ﬁ D(W(i);tt)H(W(i),A(i);t,t)> . ( H

i=i4+1 i<g;i,j€[l..7]

M,, . (BU+D, (AG), W@)))

where the expectation is with respect to the probability measure on pure dimer configurations

of RYG(l,r,a,b) as defined in (2.5), (5.1); and
(=1)’ed

(14 (—1)%at L2 1) (14 (—1)%dtw;z; )
Z W J Z 7%
Deal =11 H (14 (1) etz t)?

2, €Z wieW
where [W®| = 1;, and the integral contours are given by {CijYicis1.0,se)1;) Such that
(1) Ci s is the integral contour for the variable wl e W,
(2) Ci s encloses 0 and every singular point of
, . —p)Pieg
[T (Hv®, (1o a0:nn) ;
jEli.r]
but no other singular points of the integrand.
(3) the contour C; j is contained in the domain bounded by tCy j whenever (i,j) < (', j)
i lexicographical ordering;

H(W,X;q,t) is given by (4.2), and D(W;q,t) is given by (A.6).

Lemma 4.4. Let ¢1,c9,c3 € {L,R}. Let A,B,Y be 8 collections of countably many vari-
ables. Then we have

<HC1,C2 (A,Y), Hey e (Y,B))y = Hey e (A, B).
where if co = L (resp. ca = R), the scalar product (-,-) is with respect to (q,t) (resp. (t,q)).
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Lemma 4.5. Fori € [l+2..r], and j € [i..r], let
G: = <Ha.72 a1 ((Y(i_g),B(i_l)) ,Y(i_l)) H (W(i_l),Y(i_l);w(qJ;ai,l)) )

Mo, 0, (A9, WH)), Y (-1)
a: 1,0 (f(q,t,aj)W(j)7y(i71)) .

where in G, the scalar product (-,-) is with respect to (q,t) if a;—1 = L and with respect to
(t,q) if ai—1 = R; and w, & are defined as in (4.3), (4.4), respectively. Assume q = t, we
have

(1) Ifa,;,l :aj :L;

Ty (Y1572 BO0), (A, W) HOW U0, (49, W), (,0)
Mo,y (VO BO0) (W00 (WD 1 TW 0, (£,1)

G =

(2) Ifai_l = aj = R;

Hai,z,aj((Y(i—Q),B(i_l)), (A(j)’W(j))) H(W(iq)’ (A(j)’W(j))’ t~1,¢71))
Mo, 5.0, (Y2, BE=D) W) HWGED iw 0, (t-1,¢-1))

(3) If ai—1 = L and aj = R;

g =

G = o, a0, (Y02, BO7Y), (40, WD) [H(W(“>,(A“),W(j)),(t,t))}_

Hai—27aj (Y(i—2)7 B(i_l))a tW(])) H(W(i—1)7 _tW(j)v (ta t)
(4) If ai—1 = R and a; = L;

-1

g =

Hai72)a;j ((Y(i_Q)a B(i_l))a (A(j)’ W(j))) H(W(iil)v 7(A(j)a W(j))a (tila til))
g, 50, (Y072, BU-D) =1 0)) [ HWG=D, —t=1wh), (t-1,t-1)) ]

Proof. The lemma follows from Lemma A.6 with

J (=)D eia =Dy, (Y62, BED) 4 (1= 47", () I a1 = L
B [ ’pno/(z—?), D)+ (1= ¢"pn (=) Wi = B
(=)D p, (AD, WD) — p, (WDE(ay)) (-1 If 4,1 # aj.
Up = 11_22 [ n(A( ) W(])) ( ( )g(aj))] If A;—1 = CL]' = L.
i:g:: [p (A( 7) W(J)) (W(J)ﬁ(aj))] If a1 =aj =R.

and the fact that

xp <_Zm2<>5n<¥>> “TIII0 -
k=1

rzeX yeY

O

Lemma 4.6. Let Pr be the probability measure for pure dimer coverings on the rail-yard
graph RY G(l,r,a,b) as defined by (2.5). Let M be a pure dimer covering on RYG(l,r,a,b),
and let

M) = (AMED Y, i
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be the corresponding sequence of partitions. Then

[ H (A ¢, t)}

[l+1..7]

0 (—pe T
(EWO, e i hut )
l<j1j€[l+1 r),bj=

. Hai’aj({xi}7W(j)>
(, i tta’”)( 11 Hauax{wi},e@,t;a.j>wu>>)

] i<gsi,J €[l rlibi=+

. H Tay a, (W(i), W(j))
1<j;i,JE[l+1..7]

where WO | = 1;, and the integral contours are given by {CijYicli1.0 5t Satisfying the
condition as described in Lemma /.2.

Proof. Note that

H(X,{0};q,t) =1,
Mo p(X,{0}) = T ({0}, X) = 1.

By Lemmas 4.2 and 3.3(2), we have

]Epr[ 11 wi(A(M":);t,t)]

1€[l+1..7]

% j{ (z<]1j€[l+1 7]

, o, 0, ({2}, W)
( H D W() t t; az))) . ( H Hai,aj({xi}vf(t’t;aj)W(j))>

(H(W(f?)7(_ e Yol £ ))<1>5wj1>

i=l+1 1<jsi,J€[l..r];bi=+
H Tai,aj (W(z)> W(j)) H Hai’aj ({wi}7 {xj})
1<j;i,J€[l+1..7] i<jii,jE€[l..r];bi=4,bj=—
Note also that when g = ¢,
Haiﬂj ({$2}7 {xj}) =
i<j;i,g€ll..r];bi==+,bj=—
Then the lemma follows. O
Lemma 4.7. Let A, B be defined as in Definition ? 1. For each i € [l..r], let A 4y, (resp.
Apivn) be the algebra of symmetric functions on AW (resp. B ’+1)) over C. Define a map
¢g) t Ay o ® Agasy = C
by
05 (f @ 9) = £(0)g(0).
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Define a formal measure

MO .= ¢ (MPa .p 4.)

Then for any sequence of partitions ()\(Z), AEHD XD e Yrelt2 i the support of M@,
we have A\ = A1) Moreover, for alli € [I..7] let

Al — A \ {AD}, BU+) = B\ {BU+1}.
and
=L\ {ih,  RU=R\{i}
so that {LD, RO} form a partition P' of [I.7]\ {i}. Then the restriction of M@ to

WD, AGD NG Ay @yt

is the formal MacDonald process MP 26) g pr g4

Proof. Note that

30 )\(z+1 (0,0;4,1) ZPW)/V 1q,t Q,\<z+1>/y( q,t)
veY

By Lemma A.1, we obtain
Py 1, (03¢, 1) = 05
unless v = A\ Similarly,
Qi+, (05¢, 1) = 0;

unless v = A+, Therefore \Ij)\(i)7)\(i+1)(0,0;q,t) # 0 only if A& = X0+1)_ Similarly we
obtain that @, ya+1)(0,0;¢,t) # 0 only if A = ACGHD,
For any sequence of partitions (A, \t+1)  A0+1)) € Y"—+2 in the support of M),
one of the following two cases occurs:
e if 4 € £, then \Ij)\(i),k(i‘H)(Ov 0; q,t) 7& 0
e if i € R, then @) yi+1)(0,0;¢,t) #0
It follows that for any sequence of partitions (A, \tH1) | A+1)y € Y7=1+2 in the sup-

port of M we have A@ = XD Tt ig straightforward to check from Definition 3.1 that
the restriction of M@ to

()\(l)7 o 7)\(1'71)7 A(i+1), el A(T+1)) c erl+1

is the formal MacDonald process MP 3i) ga) pr -

Lemma 4.8. Let iy <ig < ...<iy €[+ 1..r], and let 1y, ..., 1, > 0 be integers. Let

I .= {il,iz,...,im}
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Then
Epr | [T, 09,0
jeI
j 5 1 (—1)0aias
- Jf 11 (HOVO, (1%~ )it 1))
i<jiel GEllH1.r], b=
. Iy, a, ({xz}, W(j))
X HD(W(Z)w(t taﬂ)) . H ey '
3 s Uy ' — 5
<i61 i<gyi€(l..r]ij€lbi=+ Moy o, ({zi}, €(, 150 )W0))
[ 7w (WE,we
(1<s<j<m S ( )
where |W(i)’ = l;, and the integral contours are given by {Ci,j}iel,se[li] satisfying the

condition as described in Lemma 4.2.

Proof. Take 2(r—I+m) auxiliary sets of variables C' = (C1, ..., Cr_i4m), D = (D1, ..., Dyr—14m)-
Let L, (resp. R.) be a set consisting of all the indices in £ (resp. R) as well as one copy
for each i; € INL,(j € [m]) (resp. i; € INR,j € [m]) and relabeling them.
More precisely, £, and R, can be constructed as follows. First of all, we obtain an
ordered sequence of integers

(4.6) I+1,1+2,...,41 —1,41,41,01 + 1,...,
12 — 1,20,%9,29 + 1, ...yt — Lty 0y b + 1, ... y7 — 1

consisting of r — [ +m items in total. (If iy = iy < i3, then i; appears 3 times consecutively
in the sequence above, and so on.)

For each j € [r —m+1], if the jth number in the sequence above is in £ (resp. R), then
put j in L, (resp. Ry). This way {L., R.} form a partition P, of [r — I + m)].

Let

(1) o “Ul(er»m)’ M(r7l+m+1) =0
be distributed according to

M]P)C7D7P* ,q,t ‘#(0):#(T_l+m+l):®

and apply Lemma 4.2 to it with the sequence of numbers r;, i = 1,...,r — [ + m obtained
as follows: r; # 0 if and only if the jth number in the sequence (4.6) is equal to the
(j — 1)th number in the sequence. It is straightforward to check that there are exactly m
such numbers in the sequence (4.6), indexed by

(4.7) it =141 — 142, im—1l+m
For j € [m], let
Tij,lJrj :lj.

Applying to the result (b(()u_l)(as in Lemma 4.6) for all indices 1 < u < r—1+m in
(4.7), and renaming the remaining sets of variables C}, D; into A® and B®, we obtain
the lemma. O
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5. ASYMPTOTICS

In this section, we study the asymptotics of the moments of the random height functions
and prove its Gaussian fluctuation in the scaling limit.

When the index set I in Lemma 4.8 consists of a single number i € [l + 1..r] such that
a; = L, we have

Ep, {fyk()\(M’i);t,t)}

a;—1

j{' . % H (H(W(i), (71)6%,1]._1{1:]'}; ‘) t)) (*1)5% j

GEll+1.r]bj=—iji

Hal,aj( W {x]})
Hauag(t @) Azi})

X (D(W(i); t, t)) :
J<t;g€[l.r]sbj=+

where |[W®)| = k.
Note also that

g, 0 (WO, {2;}) 4 (—1)"*
Qg ’ J _ k (7,) o éa-,a-_l —1q.
. = [t"H(WW (=1)%% " {x; };t,t)
Mg, 0; (tTW O, {z}) [ ’
If a; = a;, define
. t— wgi)a:
(5.1) Gri(WD,z5t) = 0) -
wew® t(l Ws xj)
(4)
, Wy’ — T;
(5.2) GroiWO izt = ] 55—
(4) . Wg tf]fj
ws”’ €W @)
If a; # a;j, define
(4)
A t(1 s
(5.3) Go,<i(WW,25,1) = H ( +w(i) )
@) ey (i) L+ ws Ly
()
i ws’ +tx;
(5.4) Gosi(WW,zj,t) = H TJ
w® e () ws® +T;
Then we have
(5.5)Epr [’yk( y{ 7{ G1,>i(W(i)a Zyj, t)
€li+1..7], bJ, J>ta=a;
H G(),>Z‘(W(i),l’j,t) X H G1,<i(W(i)7xj7t)
JE[+1.r],bj=—;7>%a7a; j<u;j€ll..r]ibj=+;a;=a;

Go.<(W D, a5,1) | (DOVDs2,1))
j<i;j€ll..r];bj=+;a;=a;
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Let € > 0 be small and positive. Under the periodicity Assumption 2.7, when
e(r'9 — 19y = (V;,, — Vi) + o(1),

for each p € [m], j € [n] and i € [l(f)._r(E)], let

Iy(2,>i,1 = {U € :U;(;E—)l +1, Uz(f): N{nZ+ 3}y N [i.r] 1 by, = —,ay = ai}
Lo cin = {u € :vg_)l +1, Uz(f): N{nZ + 5} N [li—1]: by =+, ay = ai}
3(2,%‘,0 = {U € :U;(,E—)l +1, Ul(f): N{nZ+j}yN[i.r]: by, = —, ay # @i}
1) o = {u € :vg_)l +1, U](;): N{nZ+ N [li—1]: by =+, au # ai}

Similar to Remark 2.8, one can check the following lemma in a straightforward way.

Lemma 5.1. Let e > 0, p € [m], j € [n], i € [(D.r9], S € {>i,< i}. Suppose that
Assumption 2.7 holds. Then at least three of I§2,>z’,17 I§2,<i71, I§2,>z‘,0 and I](.27<i’
empty sets. Moreover,

(1) if I§2,>i,1 # 0, then Ca,—jp = %f

(2) if I](',i,x,o # 0, then (g, —jp = %"

(3) if 1) i # 0, then Cop v jp = 2

(4) if 1) 0 # 0. then Ga, 4 jp = L

o are

where
_ )L, ifa=FR;
" |R ifa;=L.
Define
qj,p,>i,1 — Max I](';z,>@'71§ Qj,p,<i,l = Min IJ('ZZ,<i,1;

where we take the convention that the minimum (resp. maximum) of an empty set is oo
(resp. —o0), and define

:1:(_6) :xgg) = 0; Ve > 0.

[e.e]

Then we obtain

H G1,>’i(W(i)7aj§‘6)7t)]

JEIIH1)O r(O]bj=—;5>15a;=a;

- ﬁ ﬁ H G1,>i(W(i)7 e_ne(qj’p7>i’1_C)ml(lj?p,ﬁ,l ) t)

p=1j=1 CE[UI(SI+1..vz(f)]ﬂ{nZ—ﬁ-j}ﬁ[i..r(f)],bj:—,aj:ai
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When e is sufficiently small, we obtain

H G1,>i<W(i)7x§'e)7t)]

FEII+1) ). r(I] by=—;>isa5=a;

1—1
(@) () -
m n ([ws Lqjp,>i11 € e
_ H H Njp,>i(e)
\1—1
p=17=1,,0) cyy (i) (t {wgl)} x,(;.’)pw’l;e_”e)
N.

5, >i,1(€)

where for N € Z,

N

(@;q)n = [[(1 = ag’), YN >0
=0

(a: )00 = [J(1 — ag’);
=0

(a;9)n =1, VN <0
and

-1

Njp>ii(e) = 1;2,»,1
Similarly, we have
11 Gras (WO ) 1)

FE[IH+1)O.r(O]bj=+3j<isa;=a;

m n

= H H H [G1,<z‘(W(i), e_ne(c_qj’pKi’l)mt(zj?p,q,l ’ t)]

p=1j=1 ¢ [v;i)lﬂ..v,(f)] A{nZ+5}0[Li—1]b;=+a;=a;

t—lwgi)x(ﬁ) . e—ne)
4q5,p,<i,1)
( It Njp,<i1(€)

! (1), .(e) . p—NE
P:1J=1w§i)ew(i) (ws Lqjp<inr € N

J,p,<i,1(€)
with
Nj,p,<i71(5) = ’fﬁ,q,l -1
Moreover, let
qjp,>i,0 = MmMax I](';z,>i7o§ 4j,p,<i,0 = Min Ij(‘27<i70§

-1 Njp<iile) = ’I;,p,<i,0} -1

Njp>iile) = ‘f](-f,i»,o
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Then

Gosi (WD, 28, 1))
FEIAHD (D] bj=—j>ts0;7#a

- 1111 11 [Gosi (W, emeltimio=9

p=1j=1 ¢ [vl(f_)lJrl..vl(f)] N{nZ+j}N[i+1.7(]bj=—,a;#a;

( ] xéimoﬂ“>N

.p,>4,0(€)

m n
p=1j=1 () cpy(i) <— [wg )} xgj)p i e—m)
Njp,>i,0(€)

H G0,<i(W(i)7 $§€)7 t)]
FEII+1)O) r(O]bj=+;5<isa;#a;

_ ﬁ ﬁ H [G07<i(W(i), e~ e(c=4j,p,<i,0) '(;)p o t)

p=1j=1 ¢ [véi)l-l—l..vzge)] N{nZ+5}N[LE) . i—1],b;=+,a;#a;

( ) (6) fne>
m n Wg .I'q i01 €
- H H H ( S Njp,<io(€)
]_ ( ) ( ) —ne
—1j=1 () i ( t ws g 00 €
PP wew® pEsh? Nj,p,<i,0(€)

We further make the assumption below:

Assumption 5.2. Suppose

log t
lim — 2% — 3 >0,
e—0 ne

where B is a positive integer independent of €.

Under Assumptions 2.7 and 5.2, by Lemma B.1, we obtain as € — 0.

11 G (WD, 249 1))
JEN+1.rLbj=—sj>ia;=a;
_logt
[ 11 e G
p=1j=1,Ocpm \ 1 — e~ eN;,p,>i,1(€) [ (i )} »Tq])p ia
11 Grci(WD, 249 1))

JE[+1.r]bj=+;j<ia;=a;

log ¢

m n 1_ wgz)x(j)p . ~ Tne
- HH 11 < EWORG )

neN; € 1
1—e— p<71()t Ws Tqj, cin
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II Go,>i(W(i)7$§-E),t)]
JEl+1.r)bj=—sj2i30;7a;
log t
1 ne
. < 1 —"_ |: ( ):| ',I:gj,)p‘>1',1()
~ 1111 T ;
p=1j=1,Ocpm \ 1+ e~ "eNjp,>i0(€) [ws } 29
H Go,<i(W®, 56),15)]

JEN+1..7],bj=+;5<t;a;7#a;

log t

m n FEEONCR
- 1M 11 ( T ) ;

—neN; i0(e
p=1j=1 ()EW() 1+e 3ip.<in0l )’U} Lqjp,<io0

29

where when W® e C¥, we choose the branch such that when a complex number approaches

the positive real line, its argument approaches 0.
Let j € [n], p € [m], and i) € [I9 (9], Assume

(5.6) lir% il = y.
€E—>
Then,
(e) :
lim neNjp ~i1( 0, if 1 sin =05
e—0 nCa;,— jp(Vp —max{V,_1,x}) otherwise
(e) .
lim neN;p <1 ( 0, if 1 cin =05
e—0 NCa; +,j,p(min{V,, x} — V,—1) otherwise
(e) .
lim neN;p ~i0(€ 0, i T p>i0 = =0
e—0 n(a“ gp(Vp —max{V,_1,x}) otherwise
(e) .
llm neN 7p»<1 0( ) lf IJ D, <Z U w’
t n<ai,+,j,p<mm{vp, \}= Vi) otherwise

By Lemma B.1, we have

if 79 .
llmn6N7p>21() 07 ! 7,0,>%,1 ®7
=0 Vp —max{V,_1,x} otherwise

(e) :
lim neNj,, <i.1(€) = 07. ! I bl =b
e—0 min{V,, x} — V-1 otherwise

if 79 :
lim neN: p>20( ) 07 1 7,0,>%,0 ®7
e—0 Vp —max{V,_1,x} otherwise

(e) !
lim nelN;p, <io(€) = 07' if I cio =05
e—0 P min{V,, x} — V-1 otherwise

Moreover, under Assumption 5.2, it is straightforward to see that

limt=1.

e—0
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Furthermore, we make the following Assumption

Assumption 5.3. Let j € [n], p € [m] be fized. Let x € R, and let {i'9 € Z}cso be a
sequence such that (5.6) holds. Suppose that Assumption 2.7 holds.

(1) either for all e > 0 and x < Vp, IJ(.ZE = 0; or for none of € > 0 and x < V,,

,>i(€)1
I](';Z,m'(é),l =0.
(2) either for alle > 0 and x > V)1, I;ZQ(E)’I = 0; or for none of € > 0 and x > V,_1,
I]('z,<i<6),1 =0.

Under Assumption 5.3 we have the following corollary.

Corollary 5.4. Let j,p, X, {z'(ﬁ)}6 be given as in Assumption 5.3. Suppose Assumption 5.3
holds. Then

(1) either for all e > 0 and x < Vp, I;2’>i<€)70 = 0; or for none of € > 0 and x < V,,
(¢) _
Ij7p7>l<€) 70 - ®.
(2) either for alle > 0 and x > V1, 152,@(@,0 = 0; or for none of € > 0 and x > V,_1,
(¢) _
Ij7p7<7;<6)70 o ®.
Proof. The corollary follows from Assumption 5.3 and Lemma B.1. U
We use &~ 1 to denote the event that for none of € > 0 and x < V), I](';z,>i(€),1 =0

Ejp.<1 to denote the event that for none of € > 0 and x > V)1, I](. ) =0; & p>o0 to

€
7p7<i<€) 71
(€)

denote the event that for none of ¢ > 0 and x < V), I’

ip>i90 = 0; & p.<,0 to denote the

event that for none of € > 0 and x > V,,_1, I;ZKZ'(&),O = (.
By Assumptions 2.7, 2.9 and 5.3, we obtain
y—rfll) xf(li',)p,>z‘,1 x§0,p)ef maX{Vpil’X}lgg‘,p,»l = [Tj]il e maX{Vp717x}15j,p,>,1'
lg% $f(1§'?p,<i,1 = x§0’p)eivp7115j,p,<,1 - TjeivpillgﬁpKvl'
15% $f(lj',)p,m‘,o - x§0,p)ef maX{Vpil’X}l‘gj,p,»o = [Tj]ilei max{Vp-1.x} Lejp o
113(1) $f(1§',)17,<i,0 = xg’O)eivpillgj,p,«o =Tje P g, o

We obtain the following lemma.
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Lemma 5.5. Suppose Assumptions 2.7, 5.2

(5.7) G1,>y(w) :
(5.8) G1,<x(w) :
(5.9) Go,>y(w) :
(5.10) Go,<x(w) :
Then
lim
e—0

FENIH+1) (] b=+

lim
e—0

FE[+1..7],b=+

lim
e—0

[I

II

II

I

1 — [wrj]”

5.3 and (5.6) hold. Define

(€M), Vp>x) 7=1

[I

(PEM],Vp—1<x) j=1

ﬁ <1 + emax{Vp—l,X} [wTj]—l

1+ [wrj] eV

II

H <1 — emax{Vp—1,x} [w’i'

1 — we Vo LTy

(-

Ejp,<,1
- mm{vva}w'rj

(pelm],Vp—1<x) j=1

ii<taj=a;

JEl+1..rbj=—;>%a5=a;

lim
e—0

FE[+1..7],b=+

II

ii<taj=a;

Gl >Z(W

J2ha;=a;

G1,<i(V[/a xg'e)’ t)
Goi(W, 2l
0, >z( )

Y ] Y

Go,<i(W, xﬁ-ﬁ), t)

(5) t

H Go , <X ws

LwseW

LoVp Lejp>a
1
il

) Lejp>.0

) 1e.
n —min{Vjp, . 3,p,<,0
H 1+e Vo X}’UJT]
1+ we V17,

31

Here the logarithmic branches for Gi >y, Gi1,<y, Go,>y, Go,<y are chosen so that when z
approaches the positive real azis, the imaginary part of log z approaches 0.

We next consider the zeros and poles of Gi >y (ws), G1,<y(Ws), Go, 5y (Ws), Go,<x (Ws).

(1) For Gy ~y(w), the condition that the denominator vanishes gives

we{e

maX{fol’X}Tl_l

J }Vp>x,j6[n] stole; o

= Ry, Vs € [k];

the condition that the numerator vanishes gives

’UJG{G

Vp ——1
Tj

}Vp>x,je[n] st lg; o =1

= RX’LQ, Vs € []{7],

Hence for each x € (19, 7)) and x ¢ {Vitiem)» 91,5x(w) has zeros given by
Ry12 \ Ry,1,1 and poles given by Ry 11\ Ry,1,2-
(2) For G <y (w), the condition that the denominator vanishes gives

’U)E{e

min{vp,x}T,—l}
V;

J

p71<X7j€[n} s.t. lgj’p’<’1

- = RX’QJ, Vs € [k]
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the condition that the numerator vanishes gives

w e {eVP—IT._l}V =Ry 2,2, Vs € [k]

J P—1<X,J€[n] s.t. le; , o 1=1

Hence for each y € (1,7(9), and x ¢ {Vitieim)> G1,<x(w) has zeros given by
Ry2.2 \ Ry,2,1 and poles given by Ry 21 \ Ry 2.2;

(3) For Go ~y(w), the condition that the denominator vanishes gives

Vo —1

wel -l
Vp>x,j€[n] s.t. le; o 0=1

= RX,3717 Vs € [k]

the condition that the numerator vanishes gives

= RX,3727 Vs € [k]

w E {_emaX{VP—lzx}T'_l
J

}Vp>x,j€[n]s.t. le; s 0=1

Hence for each x € (1, 7)) and x ¢ {Vitieim)» 90,>x(w) has zeros given by
RX7372 \ RX’371 and poles RX73,1 \,R'X7372'
(4) For Gy <y (w), the condition that the denominator vanishes gives

5.11 we {—etrrt] i=Rya1, Vs €[k
( ) J Vp71<x,j€[n] s.t. lgj’p7<‘0:1 X%, [ ]
the condition that the numerator vanishes gives
w € {—emin{VP’X}Tfl} =Rya2, Vs € [k
J Vp—1<X,j€[n] s.t. le; , o o=1

Hence for each x € (100, 7(0) and x ¢ {Vi}iem)> 90,>x(ws) has zeros given by
RX7472 \ RX7471’ and poles given by RX7471 \ RX7472.

We have the following asymptotic results.
Proposition 5.6. Suppose Assumptions 2.7, 5.2 5.3 and (5.6) hold. Assume
Qi(e) = L; Ve > 0.

Let Pr(© be the corresponding probability measure. Then

1

(5.12) lir% Epr(e) {’yk()\(M’i(e)); t,t)] = 27% [g1,>z(w) . g1,<z(w) : g0,>w(w) : g0,<w(w)]
€— 71 C

ko dw
w

where the contour is positively oriented (which may be a union of disjoint simple closed
curves) enclosing 0 and every point in [Ry 1,1\ Ry,1,2)U[Ry.3.1\Ry.3,2], but does not enclose
any other zeros or poles of Gi >qo(w) - G1 <z (W) - Go, >z (W) - Go,<z(w); the expression

kB _ kBlogF

where the branch of log F' is the one which takes positive real values when F' is positive and
real.
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Proof. By (5.5), we obtain

(M,z) ()
Ep, ['Yk(A @) j{:() j{a ( Gi>i(W,z; at))

FELIHD) O O] bj=—j>ia;=a;
II Go.=i(W,2}, 1) | x II Gr<i(W,2}, 1)
je[(l+1)(5>--T(e)]vbj:_ijzi;aj?éai j<i;j€[l(f)..7“(5)];bj:—‘,—;a,;:a]
H GO <z( a-r§6)at)
<€ r(IO]b;=4;a;=a;
2?71 L (1 - %)2 b
X — i ? dw;,
(wg—wl)...(wk—wkl)_l;[( )( th)]‘_‘[ !
1<) wj i=
where for 1 < ¢ < k, Ci(e) is the integral contour for w;, and C(E) ...,C,(;) satisfy the
conditions as described in Lemma 4.2. As ¢ — 0, assume that C§ ), o ,C,Ef) converge to
contours Ci,...,Cg, respectively, such that Ci,...Cy are separated from one another and

do not cross any of the singularities of the integrand, by Lemma 5.5, we obtain
lim By [1A9;¢,0)]

— (27711)"3% ?i H [G1 > X (W) G1, < (Ws)Go, > (ws) Go, <X(ws)]ﬂ

kwseW

1
Zz 1 w; Hd’w“

(w2 —w1) ... (W — wg—1)
The (5.12) follows from Lemmas B.2 and 5.5. O

Theorem 5.7. Suppose Assumptions 2.7, 5.2 5.3 hold. Let s be a positive integer such
that for all d € [s],

lim (@ —
lim iy = xa,

such that

Assume that

(5.13) aige) = aige) == = L.

E]

Let Pr(© be the corresponding probability measure. Then
1 () () ()
- (’Vkl(A(M’“ )it,1) — Epyio 7k, (A );t,t),--.y’Yks()\(Mzs Jit,1) — Ep o, A5 );t,t))

converges in distribution to the centered Gaussian vector

(Qr, (X1)5 -+ Qie, (X))
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as € — 0, whose co-variances are

232
Cov Qs (xa), @, (X)) = kd’“h” B § § dzdu
[gl,>xd(2) ’ g1,<xd(z) : go,>xd(z) : g0,<Xd(2)] [g1,>Xh (w) - G1,<xn (w) - G0,>xs, (w) - Go,<x, (w)]khﬂ

(z —w)?

where

o 1 <d<h<s; and

e the z-contour is positively oriented enclosing 0 and every point in Ro >y UR1 >yyl,
but does not enclose any other zeros or poles of Gi >y, (W) - G1,<yy (W) - Go >y, (W) -
Go,xy(w); and

e the w-contour is positively oriented enclosing 0 and every point in Ro >y, URL >y, ],
but does not enclose any other zeros or poles of Gi >y, (W) - Gi <y, (W) - Go >, (W) -
Go<x, (w); and

e the z-contour and the w-contour are disjoint;

e the branch of logarithmic function is chosen to take positive real values along the
positive real axis.

For j € [s], define

o ) -

To prove Theorem 5.7, we shall compute the moments of Q,(:d) (ez&e)) and show that these

m\}—t

(e) (e)
(aOE7) — By (1487

moments satisfy the Wick’s formula in the limit as ¢ — 0. We start with the following
lemma about covariance.

Lemma 5.8. Let d,h € [s]. Under the assumptions of Theorem 5.7, we have

i Cov [0l (47) @4 ()] = kst % § dea

[G1,5xa(2) - G1,<xa(2) - Go,5xa(2) - Go,<xa (Z)] [gly>Xh () - G1,<x,, (W) - Go,>x, (W) - Go,<x, (w)]khﬁ

(- w)?

where the z-contour Cq and the w-contour Cy, satisfy the Assumptions of Theorem 5.7.
Proof. Note that

cor o () ol ()]

= 5 [Ber (OO, (3, 0O858,0)) — ey (3, 65,0)) B (3, 04551, |



ASYMPTOTICS OF PURE DIMER COVERINGS ON RAIL-YARD GRAPHS 35

By Lemma 4.8, we obtain

3 o (4741, (o O47:1,0) ~ B (1,01, (3, 00400

a;—1

= 6127{7{ H (H(W(i)7(_l)6ai’aj1{xj};t7t)>(_1)6ai j

i<jie{il) iy el b=—.

. I, a'({zi} W(J))

[ w9t |- [] T
X ( y Uy ) Hai,a]'({xi}7q_1W(J))
ie{zd),zz)} i<gyell..r] jE{’Ld),’Lz)} bi=+

X (TL7 LW Wiy 1)

where
w;)?
(5.14) Tr,L(Z,W) };[ijl;lw —t lw] (2i — twy)
and
’W(iﬁf))’ — kg ‘W(iﬁf) =ky,.
Note that

© @ ©
{@#Sc[kdlx[kh}}m,v)es( RRIEPSU) )> (wffd ) twlin )>

Under Assumption 5.2, we obtain

1
2

(5.15) 1 -1 —t7H =n?B2 + O(e)

Therefore

1 () (e)
ST (WD WD) -1

G) @)
w w.
— nzﬁz E ( U(6> Y + 0(6)

© : 0 ©
{(u,0)C k] X [kn]} <w1(fd ) 1yl )> <w§f‘i ) e )>
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By (5.1)-(5.4), we obtain

1 (o) (o) (o) ()
e (7, (A5 );t’t)) (%h(A(M”h 54,1)) ~ Epy (vkd(A(M”d );ti)) Epr (0, (A4 ’%tvt))

262
— (WD 20
(2mi)kathn fé( ) ]i( ) ﬁ(a) 7€< 3 H Gr>i(WH, a7 ¢)

2.1 z‘e{ig;) ,i;‘)},je[(lﬂ)(e) (O] by=—3j>isa;=a;

H G0’>7;(W(i),$;€),t)
'LE{ iy ,Zh)}je[ (I+1)(@ . r(e)], bj=—;j>%a;5#a;

H G1,<i(W )7 56)775)

ie{al,i0 b <isg €0 )by =+iai=a;

H G07<7;(W(i),l“§-€),t)
ie{i) il } i< el® r©)b;=tiai=a;
2
()
ke 1 1 — W
2= ) () r

w) w; (i

I1 ] 11 [ dw;*

ccidn) <w2(1<£>) - w(l(f))> <w£z<f)) - w(l(f))> \<usi<ke ) wﬁ"é”) . twﬁié‘”) it j
£

1 ke—1

ORINCAS

> =
-(e) (e) -(€) .(e)
{(u,0)Clka] x [kn]} <wjd ) w'n )> <wffd ) i ))

where for 1 < i < kg (resp. 1 < j < ky), C’ﬁ) (resp. Céej)) is the integral contour for

S ()
w.( ¢ ) (resp. w( ) ), and Cﬁ, . Cﬁc , Céez, .. ,Céf,)ch satisfy the conditions as described

7
in Lemma 4.2. As ¢ — 0, assume that C(e) ...,C,(:) converge to contours Ci,...,Cg, re-

spectively, such that Cy,...Cy are separated from one another and do not cross any of the
singularities of the integrand.
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Then by Lemma B.2, we have

. 1 (#7) (o
lim ———— G, _o(W\r ot
50 (2mi)Fn jim i(e) H 1>>Z§L)( 1)
2 2R \GE[I41) @ r ] b= >0 30;=a;
i(e) €
II Go,>i§f)(W( " ),x§ 1)
FEN+D) @) (@] by=—35>it 050
(e) .
H G1,<i§f)(W(zh' )7x§' )’t)
§<il G ell© . O )bi=+;ai=a,
LY (e
H G0,<i£f> (W( h )7 $§ )7 t)
iE{iE;),i,(;)},j<i;j€[l(‘)..T(E)];bj:-&-;ai:aj
()
kh 1 1 _ U)uth
Zj:l w(”](—;,e)) y LE:)) kn (
J J “h
) (e T [ oy 4
Wo —wy v we, S mw, L] EEEIER ) 1 _ twy 7=
l ’ ) ()
twj h w; "
i)
Z Z i(s)) (Z-(e)) (Z-(e)) (i(e)) + 0(6)
veElkp] u€lkq) <wud —tLwy, > <wud — twy " )
. kh khﬁ
- 277“ g [g1,>Xh (w) . gl,<xrl (w) : g0,>Xh, (w) ' g07<Xh (w)]
h
(i) d
i | 3 wit dw
e—0 i(e)) (Z-(E)) w
u€lka) (wy®  —w wy?  —w
Applying Lemma B.2 again to integrals over Cﬁ, R Cﬁld, we obtain the result. O

Lemma 5.9. Assume (5.13) holds.
(1) Let s € N be odd, and s > 3. Then

lim Bp, o [f[ o <fi§f)>] =0.
u=1

(2) If s € N is even, then

[Tk ()] - £ s L ol ()t ()

u=1 P€77$2 u,veP

IimE, .
e—0 Prl®)

where the sum runs over all pairings of [s].
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Proof. Note that

Ep o

ITey (a-;@)]
u=1
_ Z |[s]\J| |: (© H’ij ()\(M7’§E))>] H Epr(e)’)/ku (/\(M,iq(ﬁ))

JC[s] jed u€[s]\J

When computing E [ -1 Qk <ezu )} by Lemma 4.8, in the integrand there is a factor

516 S0 T () wl)

JC[s u<v;u,ve(s|\J

By (5.14) we obtain

B ~ D™ @
(5.16) = S (=) ] I1 [H (u()l t)( 1) (i) f (v)]
yLo (ol =) (f? - )

JC <v;u,we[s]\J -(€) ()
Cls] ucvmoels\S ) (0) (6

J f

Under Assumption 5.2, (5.15) is true, let
1 - - Dl

T ) ()

where C, ,, j ¢ is a constant independent of €. As € — 0, let

Kjy:= {(u,v,j, f)iu<wv;u,ve [s]\J,w§") € W<Z“ ) (U) € W(zie))}

Then (5.16) is equal to

(5‘17)(2(1)[5]\J)+|:Z(1)[8}\J< Z 21| H (Cieljf))]
]

JCls] 0AHCK (u,v,3,f)EH
Note that

Z (=DM = g,

JCls]
For each fixed H C Ky, if H # K, let
Hy:={ucs]: 3 e [ andj, f, st.(u,v,5, ) € H, or (v,u,],f € H))
the sum of terms with [, ., ; ren (C(E) , ) in (5.17) is

u,v,5,f
(5.18) | (qgfgj,j, f) S (v
(uv,5,f)eH Je[s]:JNHo=0

As long as Hy # S, the sum of (—1)I{\/| over all the subsets of [s] \ Hy is 0. Therefore
(5.17) and (5.16) are equal to

>ooem I (aiy)

wngKQ])HOZ[S] (u,’U,j,f)EH
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we obtain
(1) If s is odd, as e = 0,

Z 62‘H| H (Ci(teﬂ)),j,f) — O(es+1)

@#HQK@,H():[S] (vazjrf)eH
therefore
1 -(€) (€)
1 s\ (1) w (@) =
i Do I 7 (W) w) <o
JC[s] u<v;u,ve[s)\J

(2) If s is even, as € — 0,

> e I (i)

P£HCKy,Ho=[s] (u,v,5,f)€H

oY I o
PeP2 (uw)eP

)

=< ]l < Tr,1( W(@S)))’W(“E)))

PeP2 (u,w)EP

G.)w!™ ew( (6)) wﬁ”)ew(i“

Then the lemma follows. ]

Proof of Theorem 5.7. The theorem follows from Lemmas 5.8 and 5.9.

6. FROZEN BOUNDARY

In this section, we prove an integral formula for the Laplace transform of the rescaled
height function (see Lemma 6.1), which turns out to be deterministic, as a 2D analog of
law of large numbers. We further obtain an the explicit formula for the frozen boundary
in the scaling limit.

For z € C and x € R, define

(6.1) Gx(2) 7= G15>x(2) - G1,<x(2) - Go.>x(2) - Go,.<x(2)

Lemma 6.1. Let M be a random pure dimer covering on the rail yard graph RY G(l,r,a b)

with probability distribution given by (2.5) and (2.6). Let hyy be the height function associ-

ated to M as defined in (2.1). Suppose Assumptions 2.7, 5.2 5.3 and (5.6) hold. Then the
X K

rescaled random height function ehys (;, g) converges, as € — 0, to a non-random function

H(x, k) such that the Laplace transform of H(x,-) is given by
(6.2) / e H(x, k)dk = lg%/ e ehar (z, E) dr = ﬁj{ Gy (w)]™ —,

s oo n?a?mi
where the contour C satisfies the conditions of Proposition 5.6. Here
Gy (w)]* = e 10g[Gx (w)]

and the branch of log(C) is chosen to be real positive when C is real positive. Note that the
right hand side is non-random.
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Proof. By Proposition 5.6, (2.12) and (4.1), let £ = y, we obtain

o0
limEPr<€)/ nﬂnkeh (X K) dk
—0o0

e—0 € €
o0
. X k
— lime2E, h (f >tyd
B [ o (o) 0y
2¢2

— limE A AL gy

0 Pr'(klogt)?
1
= e 19 )G o) Gosa(0) - Goco(w)
To show that the limit, as ¢ — 0, of ffooo e Bk ey (e, 6) dk, is non-random, it suffices
to show that the limit of its variance is 0. Note that

kg AW
w

6

_ € (¢)
= o (klogt)4 Var[ (X )}

=0
where the last identity follows from Lemma and Assumption 5.2. Let o = k8 and consider
analytic continuation if necessary, then the lemma follows. O

By (6.2), we obtain
(6.3) / efna'{ia?{(x’ﬁ)dﬁ = na/ e "H(x, k)drk = ! .j{[gx(w)]aalhuuv
c

oo Ok oo nami
for o > 0.
Let m, be the measure on (0, 00) defined by
—w IH (X K)
m, (ds) = o |dk| L

We are particularly interested in the measure m, because its density with respect to the
Lebesgue measure on R is given by

m, (ds) _ OH(x, k)
ds oK
which is exactly the slope of the limiting rescaled height function in the x-direction when

s=e "
By (6.3) we deduce that for any y € (1(0), (%)) Jo my(ds) < oo, i.e. my(ds) is a measure
on R with finite total mass. Note also that for any positive integer j, by (6.3) we obtain

/OO ' tmy (ds) = /oo efnjwd/i = i [gx(w)]fzd% <Y
0

oo Ok Jmi

(6.4)

)
k=—1Ins

where C > 0 is a positive constant independent of j. Hence we obtain

(d 1 /1\/
/ m, (ds) < fQCS mx 3)<<2> 0

@2Cy-t = 2C
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as j — oo. Hence we obtain that m, (ds) has compact support in (0, 00).
We shall now compute the density of the measure m, (ds) with respect to the Lebesgue

measure on R. It is a classical fact about Stieltjes transform that
m, (ds) .1 )

X\ i =G

ds e—l>%l+ 7r\y (Stmx (s + 16))

where § denotes the imaginary part of a complex number and Stp,, is the Stieltjes trans-
form of the measure m,, which can be computed as follows: for ¢ € C\ supp(m,),

(6.5) Stm, (¢) = / m(ds) Z/ “Zxﬂ ZC]/ ,May X:K) o

Again by (6.3) we obtain

When the contour C satisfies the the conditions given as in Proposition 5.6, we can split
C into a positively oriented simple closed curve Cy enclosing only 0, and a union C; of
positively oriented simple closed curves enclosing every point in

Ry = [Rx,l,l \Rx,l,Q] U [Rx,&l \Rx,3,2]-

By the residue theorem, we obtain that

Moreover,

=

S pdw 1 Gy (w)] 7\ dw
> ijwi?[éfgx(w”"w—_wi 2, 8 (1_ Xc )w

where [9x (C )l ®

‘ < 1 and max¢ec,

series. Hence we have

Stm, (¢) = —2log (1 - [gx(c)]"> - 7:172 log (1 _ [gx(gv)]n> d;w

We would like to get rid of the fractal exponent for the simplicity of computing complex
integrals. To that end, we define another function

ot 5) - f(-5)

Let w = e?, then it is straightforward to check that ©,(() = Z?;()l Stm, (w™’¢). Then
we obtain

1
= 61_1}& IO (s +1ie) = — 61_1>I51+ Z SStm, (W' (s +ie€))
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Since Stm, (¢) is continuous in ¢ when ¢ € C\supp(m, ), supp(m,) € (0,00), and Stm, () =
Stm, (¢), we obtain that when s € supp(m,),

1 1l . 1
1 N i 1 .
(6.7) - 61_13& IO, (s + ie) - E 1 SStm, (W's) + - 61_1}& JStm, (s + ie)
1=
1 m, (ds)
- Z I oY ) — XA
T 0t I8tm, (s + 1) ds

Hence by (6.4), to compute the slope of the limiting rescaled height function in the

r-direction, it suffices to compute —% lim o1 IO, (s + i€) when s = e™".

By (6.6) we obtain
—2log (1 — gX(O)) — i]{ log (1 — Qx(w)) dlogw
¢ 1 Je, ¢

(1 50) L f (o 58]

1 j{ Q;(w) log w

7 Ci ¢ _gx(w)

(6.8) Ox(¢) :

w

To compute the contour integral above, we need to consider the root of the following
equation in w:

(6.9) Gy (w) = (™

in particular, the roots of (6.9) that are enclosed by the contour C;. Recall that C; is the
union of positively oriented simple closed curves enclosing every point in R, but no other
zeros or poles of G,. We may assume

Ci:= UgeRC§;

where C¢ is a positively oriented simple closed curve enclosing £ but no other zeros or poles
of G,.

When ¢ — oo, zeros of (6.9) will approach poles of G,. For each { € R, let we,(¢) be
a root of (6.9) such that lims_, we 1 (¢) = &.

When [(] is sufficiently large, we ,(¢) is enclosed by C¢. Enclosed by each Cg¢, there is

exactly one zero and one pole for 1 — g"c(nw), hence
1

(6.10) — ¢ d {log (1 — gX(w)) log w] = 0.
1 Ci Cn

By computing residues at each wg,(¢) and &, we obtain

1 g;((w) log w

(610 i Je, (7 = Gy(w)

dw=2)  [loguwe, () —logg]

€ERy

We may further assume that the edge weights of the graph satisfy the following condi-
tions:

Assumption 6.2. e Between each two consecutive points in [Ry 1,1 \Ry,1,2]UR 3.1\
Ry.3,2], there is a unique point in [Ry 12\ Ry1,1] U [Ry32 \ Ry3,1]; and
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o let
c1 = maX[RQJ \RQ’Q] > 0; Cy = min[Rg’l \RZQ] > O;
c3 = maX[R471 \R472] < 0; Cy = min[R471 \'R4,2] < 0;

between each two consecutive points in [Ry 2.1\ Ry2.2]U[Ry,41\Ry,41,2] except c3, ca,
there is a unique point in [Ry 22 \ Ry2.1] U [Ry42 \ Ry,a,1]; moreover, there is a
unique point in {[Ry 22\ Ry21] U [Rya2\ Rya1]} N{(—00,ca) U (c1,00)}.

o et

cs =max[Ri1 \ Ri2] > 0; e = min[R31 \ R32] < 0;
then
c3 < cg <0<y <.

In the following assumption, we give explicit conditions on graph parameters to guarantee
Assumption 6.2.

Assumption 6.3. Let i,j be positive integers satisfying

e ci € (Vp—1,Vp,), € € (Vp, —1,V},) and
e i, € [n] such that [(i — i) mod n] =0; and
e j. € [n] such that [(j — jx) mod n]=0;
hd Z* 7& j*;
If furthermore
(1) e bge):— andbg-e):—k and p1 > p2

then we have

-1
Ti*

(2) o b =0 and
(O _ ().

® a, :aj ;
OTi*ZTj*

then we have

7, < e TVm-tland 1t < eVre-17Vm
and

1 Voo o1-V,
Tix Tje < €772 1

Lemma 6.4. Suppose that either Assumption 6.2 or Assumption 6.3 holds. Then for any
s € R, the equation in w

(6.12) Gy (w) = s",
has at most one pair of complex conjugate roots.

Proof. We first show that the conclusion of the lemma is true when Assumption 6.2 holds.
We then show that Assumption 6.3 implies Assumption 6.2. Then the lemma follows.
Now suppose that Assumption 6.2 holds. Note that

Hbj6[Rx,1,2\Rx,1,1]U[Rx,w\Rx,s,llU[Rx,m\Rx,2,1]U[Rx,4,2\Rx,4,11 (w — by)

gX(w) :CH (’UJ—CL‘)
ai€[Rx,1,1\Ry,1,2]U[Ry,3,1\Rx,3,2]U[Rx,2,1\Rx,2,2]U[R 4,1\ Ry 4,2] ¢

where C # 0 is an absolute constant. Assume that

Ry 11 \ Ry 12l U Ry 31 \ Ry32) U [Ry21 \ Ry22l U [Rya1 \ Rya2] = {ar <ag <...<a}
Ry12 \ Ry 11l U Ry 32 \ Ry31] U [Ry22 \ Ry21] U [Rya2 \ Ryaa] = {b1 <ba <...<bg}
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If aj,aip1 € Ry12 \ Ry,1,1] U[Ry.32 \ Ry,3,1] is a pair of consecutive points, by Assumption
6.2, there exists a unique b; € (a;,a;+1) where j € [k]. It is straightforward to check that
one of the following two cases occurs

o limy, 4,4 Gy(w) = —00 and limy,_sq;, ,— Gy (w) = 400; or
o limy, 4,4 Gy(w) = +00 and limy,_q,,, — Gy(w) = —o0.
By continuity G, (w) is a surjection from (a;, a;+1) onto (—oo,00). Hence for each s € R,
Gy(w) = s has at least one root in (a;, ait1).
If ap,aptr1 € Ry22 \ Ry2,1] U [Rya2 \ Ry4,1] is a pair of consecutive points, similar
arguments as above shows that for each s € R, G, (w) = s has at least one root in (ap, ap+1).
Note that all the i’s and p’s above give us at least k — 3 real roots of (6.12).
The following cases might occur

(1) s™ = C. In this case the equation (6.12) in w has at most k— 1 roots in the complex
plane. But we already have (k — 3) real roots, hence in this case (6.12) has at most
one pair of complex conjugate roots.

(2) s™ # C. In this case the equation (6.12) in w has exactly k roots in the complex
plane. Again it is straightforward to check that one of the following two cases

occurs
o limy g, + Gy (w) = —o0 and limy,_yq, - Gy (w) = +o0; or
b hmw—>ak+ gX(W) = +o00 and limw_ml_ gx(w) = —00.

By continuity G, (w) is a surjection from (—o0, a1)U(a,, 00) onto (—oo, C)U(C, 00).
Hence for each s # C, G, (w) = s has at least one root in (—oo, a1) U (ap, 00). Since
(6.12) at least (k —2) real roots, we deduce that it has at most one pair of complex
conjugate roots.

It is straightforward to check that Assumption 6.3 implies Assumption 6.2. Then the
proof is complete. O

Lemma 6.5. Suppose Assumptions 2.7, 5.2 5.3 and (5.6) hold. Suppose that either As-
sumption 6.2 or Assumption 6.3 holds. Let H(x,k) be the limit of the rescaled height
function of pure dimer coverings on rail yard graphs as € — 0, as obtained in Lemma 6.1.

Assume that equation (6.12) in w with s = e~ has exactly one pair of nonreal conjugate
roots and Ry # (.

(1) If  Rya11 \ Ry1,2] =0, then

Gy (0) < e ™",
(2) If Ry31 \ Ryz3,2] =0, then

Gy (0) > e ™",

Proof. We only prove part (1) here; part (2) can be proved using exactly the same technique.
Assume Ry # 0 and [Ry11 \ Ry,12] =0, then [Ry 31\ Ry,3.2] # 0. Let

(6.13) By = maX[T\’,X,gJ \RX73»2] < 0.
o If [RXQJ \RX’2’2} 75 @, let
(6.14) By :=min[Ry 21 \ Ry2,2] > 0.

o If [Ry21\Ry2z2] = 0, let
(6.15) By = 400,
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Then by (5.7)-(5.10) and (6.1) we have

(6.16) Jim Gy () = —oc

Let K be the total number of complex roots (counting multiplicities) in w of G, (w) = e™"".
From the proof of Lemma 6.4, we see that there are at least K —2 real roots of G, (w) = e™"*
in (—o0, B1) U (B, +00). If G (0) > e™™*, by (6.16) and the continuity of G, (w) when
w € (B1, By), we deduce that there is at least one real root of G, (w) = e~ in (By, 0], which
contradicts the assumption that G, (w) = e™"* has exactly one pair of nonreal conjugate
roots. Then part (1) of the lemma follows. O

Then we have the following proposition:

Proposition 6.6. Suppose Assumptions 2.7, 5.2 5.3 and (5.6) hold. Suppose that either
Assumption 6.2 or Assumption 6.3 holds. Let H(x, k) be the limit of the rescaled height
function of pure dimer coverings on rail yard graphs as € — 0, as obtained in Lemma 6.1.
Assume that equation (6.12) in w with s = e~ has exactly one pair of nonreal conjugate

roots and Ry # 0 and G, (0) # e~ ™. Then
OH(x, K 2arg(w
o () 2t

where W is the unique nonreal root of Gy(w) = e ™

branch of arg(-) is chosen such that arg(wy) € (0, 7).
Proof. By (6.4) (6.7), we obtain

in the upper half plane, and the

IR 1) =— lim l\s@ (s +1ie)
Ok e—=0+ T J—
By (6.8), (6.10), (6.11), we obtain
OH(x, Kk Cx
(6.18) 6(9/1 K _ =21g (O)>e-nr — = Z arg(we (e 7)) — arg(§)]

fERX

where the branch of arg is chosen to have range (—m,7]. Hence we have

arg(€) = {0 hee

1 otherwise.

Under the assumption that R, # 0 and G, (0) # e~ ", the following cases might occur:

(1) [Ry31 \ Ry3.2] # 0. In this case the number of negative poles in R, is exactly
|Ry3.1 \ Ry32|. From the proof of Lemma 6.4 we see that there are at least
|Ry.3,1 \ Ry,3.2| — 1 negative real roots in {we \(e™")}eer, . Let By be defined as in
(6.13).

(a) If [Ry11 \ Ry 1,2] # 0, let
By :=min[Ry 11\ Ry,1,2] > 0.

(b) If [RXJJ \nyl’g] = @ and If [RX72:1 \RX72’2] 75 @, let B2 be defined as in (614)
() Ry 1,1\ Ry12l =0 and If [Ry 2.1 \ Ry 22| = 0, let By be defined as in (6.15).
Then by (5.1)-(5.4) and (6.1) we have (6.16) The following cases might occur
(a) Gy(0) > e™": then there exists a unique root in {we (e™")}eer, N (B1, Ba)
which is negative; in this case the argument of each negative pole in R, cancels
with an argument of a unique negative root in {we (e ") }eer,;
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(b) Gy(0) < e™": then there exists no root in {we,(e™")}eer, N (B1,0); in this
case there is a unique negative pole in R, whose argument cannot cancels with
an argument of a unique negative root in {we ,(e™")}eer,;

in either case we have (6.17) holds.

(2) [Ry1,1\Ry,1,2] # 0 and [Ry 31\ Ry,3,2] = 0. In this case there are neither negative
poles in R, nor negative real roots in {wey(e™")}eer, - By Lemma 6.5, we have

G, (0) > 0. Then (6.17) follows from (6.18).
O
Definition 6.7. Let {RYG(Z(e),r(e),g(e),b(d)}ao be a collection of rail-yard graphs satisfy-
ing Assumptions 2.7, 5.2 5.3 and (5.6). Suppose that either Assumption 6.2 or Assumption
6.3 holds. Let H(x, k) be the limit of the rescaled height function of pure dimer coverings

on rail yard graphs as € — 0, as obtained in Lemma 6.1. The liquid region for the limit
shape of pure dimer coverings on these rail yard graphs as € — 0 is defined to be

L= {(X, k) € (10, r0) xR: ?z(x,/i) € (0,2)}.
and the frozen region is defined to be

0
{em € 0,00 xr: P e 0.2
The frozen boundary is defined to be the boundary separating the frozen region and the
liquid region.
Remark 6.8. By Proposition 6.6, we see that if Ry, # 0 and G (0) # 0, (x,k) €
(1(0)77“(0)) X R is in the liquid region if and only if the following equation
(6.19) Gy(w) =e""

in w has exactly one pair of nonreal conjugate roots in w. By Lemma 6.4, we see that the
the frozen boundary is given by the condition that (6.19) has double real roots.

Next we shall find the frozen boundary. The discussion above shows that if R, # () and
Gy (0) # 0, (x,x) € (19,7) x R is on the frozen boundary if and only if (y, k) satisfies
the following system of equations

Gy (1) = e
(6.20) {dﬁggx(m 0
dw -

The second equation in (6.21) gives

6.21) 0 = > ! - !

Vp—1 max{Vp_1,x}—1
w e’'rT. w (& p=bLAST.
(pE[mM],Vp>x).d€ln)e; , o =1 J J

1 1
+ Z V, I _ en’lin{\/p,x},]_j—1

. w — e Pfl’["— w
(pElm],Vp—1<x)j€n]:le; , . =1 b
oy 1 1
max{Vp,l,X} —1 - Vp _1
(pe[m}7Vp>X)7jE[n}:lgj’p’>70:1 w+e 7_] w+e 7']
> 1 1
w+ emin{vp’X}Tj_l w + eVr-1 Tj_l

(pE[M],Vp-1<x)si€ln]1e; , _ (=1
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7. HEIGHT FLUCTUATIONS AND GAUSSIAN FREE FIELD

In this section, we prove that the fluctuations of height function converges to the pull-
back Gaussian Free Field (GFF) in the upper half plane under a diffeomorphism from the
liquid region to the upper half plane. The main theorem proved in this section in Theorem
7.7.

7.1. Gaussian free field. Let C§° be the space of smooth real-valued functions with
compact support in the upper half plane H. The Gaussian free field (GFF) = on H with
the zero boundary condition is a collection of Gaussian random variables {Ey} fecee indexed
by functions in C§°, such that the covariance of two Gaussian random variables Zy,, =y,
is given by

(7.1) Cov(Z4,Ey,) = / / f1(2) fo(w)Gu(z, w)dzdzdwdw,
H JH
where
1 _
Gu(z,w):=——1In Q , z,we H
2m Z—w

is the Green’s function of the Laplacian operator on H with the Dirichlet boundary con-
dition. The Gaussian free field = can also be considered as a random distribution on C§°,
such that for any f € C§°, we have

=)= [ SR = g

Here Z(f) is the Gaussian random variable with respect to f, which has mean 0 and
variance given by (7.1)) with f; and fo replaced by f. See [34] for more about the GFF.

7.2. w, as a mapping from £ to H. :
By (5.7)-(5.10) and (6.1), we may write G, (w) as the quotient of two functions U, (w)
and R(w), such that U, (w) depends on x and R(w) is independent of x. More precisely,

G, (w) = 5,
where
; _p (14 e Xwr;
o - Rt
and
(7.2) R(w) = Ay 4y

For j € [n] and p € [m] we use bj(p — 1,p) = + to denote that for each € > 0, and each
integer k such that ek € (V,—1,V},) and [(k — j) mod n] =0, bl(:) S
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Note that

A= I I (-eYwr) e [ (1= we Vi) e

J1 (p€[m],Vp>x) (p€[M],Vp—1>X)
X H (1 - we‘VTHTj)718“”"1 H (1 — e‘VPwTj)1£7=P*<’1
(p€m],Vp—1<x) (p€[m],Vp<x)

— —Vo,. " Loj00)=+ Vo N Leime1my=—
= H [(1 —e ’U)T]) J (1 —e ’LUT]) J
j€[n]:a;=L

m—1
(7.3) % [H (1 _ eVijw)—lbj<p,p+1>++1bj<p1,p>+]

p=1

A = (e Vowr) &m0 T (14we Vomrry) mmo

1 (p€[m],Vp>x) (p€[m],Vp—1>x)
x (14 e Yowry) mso T (14 we Vo) omeo
(p€[m],Vp<x) (P€[M],Vp—1<X)

_ 1. - _ 1 _ -
=TI [ o) e (1 e ) ot
jE€[n]:a;=R

n

<

m—1
(74) X [H (1+eVijw)lbj<Pvp+1)—+_1bj(P1vP)—+]

p=1

We shall always use []% to denote the branch which takes positive real values on the
positive real line. Define

=

U(ws, 2z) = HJG["]:%’:R(l o) | — Zx
H‘je[nLaj:L(l - ’U)*T])
Hence we have

(7.5) Gy(w) =e™ "

if and only if
U(ws,z:) =0
[R(w)]» = =
(W, 24) = (e Xw, e "z)

Lemma 7.1. Let

nri= el a=RY;  npi=|{j €l a; = L}

For any (a,0) such that

(7.6) 0c(0,71), ac (0, i+ (ng = ”L)6> ,

n

there ezists a unique pair (wy, z«) such that arg z, = « for some k € Z, argw, = 0 and

U(wy, z¢) = 0.
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Proof. Note that ng + nr, = n. For 6 € (0,7), define a map By : [0,00) — R by

B — 0\ . i0__.
o(p) - Z arg(1 + pe'’7;) Z arg(l — pe'’7;)
j€[n]:a;=R jé€[nl:a;=L
where the branch of arg(-) is chosen such that it has range (—m, 7]. It is straightforward
to check that By(p) is strictly increasing when p € (0,00). Moreover,

—nr)d
lim By(p) = 0; lim By(p) = DLT (g = ne) .

p—0 p—00 n n

(nr—nL)

Since By is a bijection from (0, c0) to (O, PLE 4 A 9), for any («, 0) satisfying (7.6),
we can find a unique p > 0, such that By(p) = . Let

i
wy: = pev;

[Hje[n],ajR (1 + w*Tj)] B

HjE[nLaj:L(l - w*Tj)

[

Zs

Then the lemma follows. ]

Proposition 7.2. For each (x,k) € L, let wi(x, k) be the unique root of (7.5) in the
upper half plane H. Then w, : L — H is a diffeomorphism.

Proof. We first show that w is a bijection. For any w € H, let z = [R(w)]% Let
0 :=argw € (0,7); o :=argz
By (7.2) (7.3) (7.4) we obtain
L
n

1%

(77) a = ’"wTj) ]-bj(m—l,m)=—]

[f arg (1 — e*VOwTj) 1y, 0,1)=+ —arg (1 —e
j€[n]:a;=L

_|_

m—1
S arg (1 e Vo) (—Layuprnyos + 1bj<p1,p>-+>]
p=1

bY a0 e wn) Ly + e (L4 e W) Ly g

+

m—1
Z arg (1 + €7VPTJU’) (1bj(p7p+1)=+ - 1bj(p—17p)=+)]
p=1

Then we have

m

1
(T8)a = n Z Z [arg (1 — e_Vpu”'j) —arg (1 - e_Vpﬂ“”'j)} Lo, (p-1.p)=+
j€lnf:a;=L | p=1
—arg (1 — e_VmwTj)] + Z [arg (1 + B_leUTj)
j€[n]:a;=R

m

+ > [arg (L e twry) —arg (14 e 7wr;) | 1,1yt
p=1
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and
(7.9) a = 1 Z [—arg (1 — e Yowr;)

n .
j€[n]:a;=L

m
Z arg (1 — ™" wry) — arg (1 — e~ Pwry)] Lo, (p—1.p)=—
p=1

S fars (14 e Vo)

j€n]:a;j=R

m
+ Z [arg (1+ e Pwry) —arg (1+ ¢~ twry)] 1y, (po1 )=
p=1

Note that for any w € H, u,v € [0, 00] and u < v, we have
—(m — argw) < arg (1 — uflw) <arg (1 - vilw) <0
and
argw > arg (1 + uflw) > arg (1 + vilw) >0
Hence from (7.8), we obtain

a > % Z [— arg (1 — e_VmwTj)] + Z [arg (1 + e_VmwTj)] >0

Jj€[n):a;=L j€ln]:a;=R

y (7.9), we obtain

1 Vi -V
a < - Z [— arg (1 —e OWTj)] + [arg (1 +e OwTj)]
j€ln]:a;=L j€[nl:a;=R

nrm+ (np —nr)0
n

By Lemma 7.1, we can a unique pair (ws,z,) such that argz, = « for some k € Z,
argw, = 6 and U(wy, 2z,) = 0.

= log <w> ; Kk := log <Z>
Wi Zx

where the branch of the log(-) is chosen such that it takes real values on the positive real
axis. Then we deduce that w, is a bijection. From the process we see that both the
mapping w, and its inverse are differentiable. Then the proposition follows. O
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7.3. Convergence of height fluctuations to GFF. Splitting the sum of the RHS of
(6.21) into those depending on x and those independent of y, we obtain
0

:*Z%JFZ%

jetnfa= YT T elag=r W T TS

n Z Lo, (ppr1)=+ —V 1bi<1pfl,p>:+ . <1bj<mvl,m>_—1 n 1b,-<o,vl>—j1>
pelm—1],jelnla;=L W e jella=p \ W TETT W enT;

n Z Lo, (p-1.p)=+ —V 1bi<1p,p+1>:+ . <1bj<mv1,m>_1 . 1@(@;):)
pelm—1],j€[nl,a;=R w At errT; jellay=r \ W T €T, w+ 70Ty

Let S be the set of all the zeros and poles of G, that are independent of ; or equivalently,
S is the set of all the zeros and poles of R(w). More precisely,

S = {er; ' ipeim—1],jen],a; =L bilp—1,p) #bj(p,p+1)}
U{=e"rrtipem—1].j € [n].a; = Rbj(p—1,p) # bj(p,p+ 1)}
U{eVOT;l,eV’"Tj_l :j€n],a; =L} U {—eVOTj_l, —eVmTj_l :j €[n],a; = R}

Then we have the following lemma.

Lemma 7.3. Each u € R\ S is a double root of (7.5) for a unique pair of (x, k) € R?.
Proof. Define

fo)= S ——— v L

Jj€[n):a;=L 1- TS j€ln]:a;=R 1+ TS
and
Lo, o+ D)=+ — 1o;(0-1.m)=+ Lojom—1,m=— Lo,00,)=+
glw): = Z w—eVor ! + Z w— eVmr ! * w— eVor:
pelm—1],7eln],a;=L j jelnlag=L j j
Lo, o—10)=+ — 1o (mp+1)=+ Lo m—1,m=— Lo;0,)=+
* Z w4 eVor ! - Z w+ eVmr ! * w + eVor: !
pe[m—1],5€[n],a;=R J j€[nl,a;=R J J

Then v is a double root for (6.12) for some (x, &) € [r(?),100] x R if and only if
1
R(u) ]"
710 eH =
(0 bio
(7.11) Flexut) = ug(u)

where []% is the branch that takes positive real value on the positive real axis. The function
f(s) is defined in R\ {—7;}jcpn):a;=r U {7j}jem),a,=2]- Suppose that we enumerate all the
points in {—7;}jcin):a;=r U {7j}jen),a;=1 in increasing order as follows:

—dp, < —dp;, 1< ... <-d1 <0< <az<...<apn,
Since for all s € R\ {—7;}je(n).a,=r Y {Tj }jeln),a;=L]:
1 1

(1 — 77 4 —14)2
]'E[n]:aj:LTj(1 Tj jE[n]:aj:RTJ(1+Tj S)

we obtain

(1) f is strictly increasing in each interval (a;, aiy1), for i € [ng — 1] from —oo to oo;
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(2) f is strictly increasing in each interval (—d;y1, —d;), for j € [ny — 1] from —oo to
003

(3) f is strictly increasing in the interval (—dj, aq) from —oo to oo;

(4) f is strictly increasing in the interval (o, c0) from —oo to 0;

(5) f is strictly increasing in the interval (—oo, v, ) from 0 to oo.

Hence for each ©v € R and for each set
(7.12) A= {(—dnL,—dnL_l),...,(—dg,dl),(dl,al),(al,ag),...,
(anR*h anR)’ (anR7 OO) U (_007 _dnL)}>

there is a unique y such that (7.11) holds and eXu™! € A.
For j € [n], let

(7.13) pjr = max{p e [0.m]: eVij_l <wu,aj = L};
(7‘14) Pj,r = max{p S [Om] tu < —eVPTj_l,aj = R}

again we take the convention that the minimum (resp. maximum) of an empty set is co
(—00); and assume for all j € [n]

bj(—OO, _OO) = - bj(m7m + 1) =+.
From (7.7), we obtain
(7.15) 6£%1+ arg[R(u + ie)]»
™
- ( Z Lo,(pjmpj )=+ T Z 1b_7'(p_7',L7pj,L+1)—+)
j€[n]:a;=R jE€[n]:a;=L
where k € 7Z. Moreover,
. NS
(7.16) ELH& arg[Uy (v + ie)]»
1 _ . - .
= lim = ( Y g+ N ution) - arg(1 - ¢ X(U+1€)Tj))
Jj€ln],a;=R j€ln],a;=L

T
E ( Z lu<—e><‘r;1 + Z 1u>e><7—;1

je[n}vaj:R jE[n],a]‘:L
The following cases might occur
(1) uw < 0: then

. . 1L T .
(7.17)  lim arg[R(u +ie)]» = —[{j € [n] - aj = R, bj(pj.r, pjr +1) = +}]

e—0+

and

1 T
1 1 i n = — 1 : . = R X -1
(7.18) E_1>1%1+3Lrg[UX(u—I—le)] - ‘{] €n|:a; =R, —1j < elu }‘
It is straightforward to check that there exists a unique A satisfying (7.12), such
that (7.17) and (7.18) are equal when eXu~! € A.
(2) w > 0: then

. .\ ™ .
(719) T arg[R(u+ie)) = = |{j € [n]: a; = L,by(pja.py0 +1) =+
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and

(7.20) lim arg[U, (u + i€)]

e—0+

S|=

T, . _
= EH]E[n]:aj:L,eXu 1<Tj}}

It is straightforward to check that there exists a unique A satisfying (7.12), such
that (7.19) and (7.20) are equal when eXu~! € A.

Then we deduce that u € R\ S, there exists a unique x such that (7.11) holds and (7.15)
and (7.16) are equal. The condition that (7.15) and (7.16) are equal is equivalent of saying
that the right hand side of (7.10) is real and positive. When the right hand side of (7.10)
is positive, we obtain a unique x € R. Then the lemma follows. O

Assumption 7.4. Let i,j be positive integers satisfying

o ci € (Vp—1,Vp,), €5 € (Vi — 1, V)p,) and

e i, € [n] such that [(i — i) mod n] =0; and
e j. € [n] such that [(j — jx) mod n] =0;

® i, # jx and T, > Ty,

. (6) — 9.

J )
then we hcwe

7y, < eVre Ve
Ty Jx

Remark 7.5. Under Assumption 7., if we order all the points in {—7;};em].a;=r U
{—Tj}je[n],aj:,; as follows
—dppy < —dpp  <...<—-d1 <0< < <...<ap,
Then we can order all the points in {ev”Tj_l}pe[o..m},je[n],asz U {evaj_l}pe[o_'m}’je[n]ﬂj:]{
as follows
—dteVm < —dteVmt << —dte <
—dyteVm < —dyteVmt << —dyte <

—dy eV < —dleVmt < < —dte <

~1,Vo 1 Vi 1 oV
o e <y, <. <oy e
al_levo <oy eVt << al_leVm

Lemma 7.6. Suppose Assumption 7./ holds. For u € HUR, let (Xu, ku) € R? such that
Oyu(u) = e

Assume one of the following two conditions holds

(1) u—>eVPT ESfor some p € [0..m], j € [n] and a; = L;

(2) u— — V T; 1€ S for some p € [0.m], j € [n] and aj = R;
then xu — Vjp.
Proof. (1) We first consider case (1).

(a) Assume that u — eVPTj_l € S for some p € [m — 1], j € [n] and a; = L. Let

0 > 0 be positive and small. By (7.13), under Assumption 6.3 we obtain that
for i € [n], a; = L,
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o if u= eVij_l -0

—o0o Ifr<7y
piL=qp—1 Iftr=m1;
m If 7; > 75
o if u= eVPTj_1+5
—oo If 7 <7y

Pi,L =P If 7 =74

m If 7, > 7
By (7.19) we have
: : N g ca; = Lo T .
(7.21) [u%el‘gr%l_] 62%1+ arg[R(u + ie)]» = ~ Hi€n]:a;=Limi > 15} + 1y, (p—1,p)=+
and
(7.22) lim lim arg[R(u+ie)]" = —|{i€[n]:a;=Lim > TiH + Lo, (ppt1)=+

[u—eVr 7;1 +] e—0+

Note also that

+oo i 1y (ppr)=+ < Lo;(-1.0)=+
lim — ug(u) = ¢ —oc0 1, (ppr1)=+ > Loy (p-1.0)=+
[u—e'Pr -] i i
j a finite real number if 1bj(p,p+1)=+ - 1bj(p—1’p):+
and
o0 if 1bj(p,p+1)=+ < 1bj(p—1,P)=+
lim  ug(u) = 4 +oo Ly, pps1)=+ > Lo, -10)=+
[u—e'P1 " 4] i i
5 a finite real number if 1; (), 41)=+ = Lp,(p—1p)=+

Since CVPTj_l € S, we obtain that bj(p — 1,p) # bj(p,p + 1). We obtain that
when u — eVPTj*l—i— or u — eVPTj*l—, by (7.11), eXu~! approaches some 7, for
ar, = L, k € [n]. Moreover
(i) If Lo, (p-1p) > Lo, (ppr1), @S U — eVPTj_l—, eXu~! approaches 75, from the
left;
(1) I 1y p-1) < Lo (pps1)s @S U= eVPTfl—, eXu~! approaches 7, from the
right;
(i) If 1y (p-1) > Lo, (ppr1)> @S U — eVPTj_l—i-, eXu~! approaches 7, from the
right;
(iv) If Ly (p—1p) < Lo, (ppt1)s @S U — eVPTj_l—i—, eXu~! approaches 7, from the
left;
By (7.20),
(1) I 1y, (p-1p) > Lo (ppt1)
(7.23) lim lim arg[U,, (u+ ie)]» = % Hi€n]:a; =Ly > 7}

[u—e"P ijl —] €0+

(7.24) lim lim arg[U,

[u—eVer; 4] e20+

(wtio) =Tl el 0 = Limi > )]

u
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(ii) The case when u — BVOTj_l and u — e"m

can be proved similarly.

. . . 1
(7.25) [uﬁel‘gr:jfli] 61—1>I(I)1+ arg[Uy, (u +1ie)]»
(7.26) lim

[u—eVp T 14)e—0+

In either case to make (7.23)-(7.26)
(7.21), (7.22), we must have 7, = 7.

(b) The case u — 6‘/07'{1 or u — GVOle for some j € [n] and a; = L can be

proved similarly.
(2) Now we consider case (2).

(a) Assume that u — —e?

55

71 for some j €

j [n], a; = L

:%Hie ] :a; = Lim > 74}

lim arg[U,, (u+ ie)]% = % {i€[n]:a;=Lim > 71}

equal to the corresponding arguments in

Tj_l for some p € [m — 1], j € [n] and a; = R. Let

0 > 0 be positive and small. By (7.14), under Assumption 6.3 we obtain that

for i € [n], a; = R,

o if u= —eVPT{l )
o0 If 7 <7
DPiR= 14D If ; =7
m If 7; > 75

o ifu=—e"rr ' 44
—o0 Ifrn <7
pir=<p—1 If ;=1
m If r; > 7

By (7.17) we have

. . . 1
(7.27) [u%_lel‘glnil_] 6£%1+arg[R(u+1€)]" =
and
(7.28) lim  lim arg[R(u+ic)]7 = —
n

[u——eVpr t4] €0+

Note also that

+00
[uafleigflf} uglu) =4 —oc
Y a finite real number
and
—00
lim ug(u) = ¢ +o00

u—>—eVPT-_1+ .
[ ;] a finite real number

T .
i€ nlrai = Bymi > 7} + Ly ppry=+

Hi€ln]:ai=Rym > 75} + Lo, p-1.p)=+

i Lo, ppt1)=+ < Lo;(p-1.9)=+
if 1y, (pp+1)=+ > Lo, (p—1.p)=+
if 1y (pp+1)=+ = Lo;(p—1,p)=+
i 1 (ppr1)=+ < Lo;(p-1,p)=+
if 1y, (pp+1)=+ > Lo;(p—1,p)=+
Ly, ppt1)=+ = Lo;(0-19)=+

Since —eVPTj_l € S, we obtain that b;(p — 1,p) # bj(p,p + 1). We obtain that

when v —
—13, for ap = R, k € [n]. Moreover

—eVPTj_l—i- or u — —GVPT]

1 by (7.11), eXu~! approaches some
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(1) I 110 > Lo,ppr1), a8 u — —eVij_l—, eXu~! 4 73, approaches 0
from the left;

(i) If Lo, p-1p) < Loj(ppt1), @S u — —eVPTj_l—, eXu~! + 73, approaches 0
from the right;

(i) If 1y (p-1) > Lo;(pps1), S U — —eVPijl—l—, eXu~! 4 75, approaches 0
from the right;

(iv) If 1y 1) < Ly;(ppr1), @S U — —eVPTj_l—i-, eXu~! 4 75, approaches 0
from the left;

By (7.18),
() Ly p15) > Lo ppr1)
(7.29) lim nmmﬂ&@+mﬁ:%memym:&n>mﬂ

[u—)—evpﬂrjfl—] e—0+ “

(7.30) lim lim arg[U,, (u+ ie)]% = % i€ n]:ai=R;7i > 11}

[u——eVp T]-_I-H =0+ h
(11) If lbj(p—l,p) < ]-b]-(p,p—l-l)
(7.31) lim lim arg[Uy, (u + i€)]"

[u—)fevp -rj_ 1 -] e—0+

%Hz €[n]:a; = Ry > 71}l

(7.32) lim 1ma@@¢wum%:%wemywzmn>mﬂ

[u——eVp 7—;1+] =0+ “
In either case to make (7.29)-(7.32) equal to the corresponding arguments in
(7.27), (7.28), we must have 7, = 7.
(b) The case when u — —eVOTj_l or u — —eVmrt

; for some j € [n], aj = R can
be proved similarly.

O
Theorem 7.7. Let {RYG(Z(e),r(e),g(e),b(e))}oo be a sequence of rail-yard graphs satisfying
Assumptions 2.7, 2.9, 5.2, 5.3, 6.2, 7.4. Let w4 : L — H be the diffeomorphism from the
liquid region to the upper half plane which maps each point (x, k) in the liquid region to
the unique root of (6.12) in the upper half plane H. Then as € — 0, the height function of
pure dimer coverings on {RYG(Z(G),r(e),g(e),b(e))}ew in the liquid region converges to the
w.-pullback of GFF in the sense that for any (x, k) € L, x ¢ {Vp}pLo and positive integer

k
/00 (hM (X, E) —-E {hM (K, E)D e R —s e RBE(w o (x, K))dk

— 00 € € € € (X,H)EE

i distribution.

Proof. Let x € [r©,10] and k be a positive integer. By (2.12) and Assumption 5.2, we
have

7 s (55) o (5 5] = s o5~ Brtao,

where x = 2m — % By Theorem 5.7, we obtain that for

19 <yi<xa<...<xs<r®

and positive integers ki, ..., ks
([ o) 2o (o )] o)
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converges to the Gaussian vector with covariance

. (G ()57 [Gy, ()] ™"
I = v nQﬂQ CE jq{ f ~ )’ dzdw

Under Assumption 6.2, we deform the integral contour C,, to Cw such that
(1) 5111 = Lw,1 U Cw,2§
(2) Cy, lies in the upper half plane except two endpoints along the real axis;
(3) Cu,2 is the reflection of Cy,; along the real axis;
(4) [wi] 1 (Cuw,) is the vertical line in £ passing through (x;,0).

Similarly, we deform the integral contour C, to C. such that
(1) C. = C.1 UC.p;
(2) C. 1 lies in the upper half plane except two endpoints along the real axis;
(3) C.2 is the reflection of C,; along the real axis;
(4) [w4+]7Y(C,.1) is the vertical line in £ passing through (y;,0).

Then making a change of variables from (z,w) € C2 to ((x1, 1), (X2, k2)) € L2 by [wy ]~ x
[w,]~! and the corresponding complex conjugates, we obtain
k)jﬁ
ko= 7{ 7{ CHCI| gXJ( e
? kik; n2ﬂ2 ()2 w)2
B / / i Ow - (i, ki) OW (X5, 5) 3 o
kikﬂ'”%Q(m)z el Jovrner (W (Xis i) — Wi (X, £5))? Ok, Ok B
7/ / eiwklﬂe;nﬁjw Ow(Xi, ki) amdmdm
el Joamer (Wi (xi ki) = wi(xg,05))2 Ok O

—nkikiB,—nkik;B L 87
_/ / € e " Ow (X, ki) WJr(XJ"%])dHidﬁj
(xj:m5)EL S (xirmi)EL (W+(Xi7 Ki) - W+(Xj7 Kj))2 Ok 8/{j

N / / e~ nrikifg—nrik;f 8W+(Xi7 Ki) 8W+(Xj, Kj)dliidlij
omnel Joamoer (Wi(xio ki) = wi(xg,5))2  Ori O

Integral by parts, we obtain that
w (X0, ki) — W+(XJ’ )

I, = 2 > / / e—nnik’iﬁe—n/@jkjﬁ log
(7”) (xjm5)EL J (xi,kwi)EL w (X, "%‘) - W+(Xja Kj

— aCoe( [ e )i, [ Sl s |
(Xi,wi)EL (xj,kj)EL

dr;dk

Then the proposition follows. ]

8. EXAMPLES

In section 8, we discuss specific examples of the rail-yard graph, such that the limit
shape and height fluctuations of perfect matchings on these graphs can be obtained by
the technique developed in the paper; these examplse include the pure steep tilings and
pyramid partitions.
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8.1. Pyramid partitions. A fundamental pyramid partition is a heap of square bricks
such that

e Each square brick is of size 2 x 2 and has a length-2 central line dividing it into
two equal-size rectangular parts; hence the direction of the central line determines
the direction of the square brick; and

e Each square brick lies upon two side-by-side square bricks; and is rotated 90 degrees
from the bricks immediately below it; and

e there is a unique brick on the top.

A pyramid partition is obtained from the fundamental pyramid partition by removing
finitely many square bricks, such that if a square brick is removed, then all the square
bricks above it are also removed.

Let s be a fixed positive integer which is odd. Let As be the set of pyramid partitions
that can be obtained from the fundamental partition where the center of the square brick
on the top is (0,0) and where we can only take off bricks that lie inside the strip —s — 1 <
x—1y < s+ 1. See Figure 8.1 for examples of pyramid partitions, and Figure 8.2 for the
corresponding domino tilings and perfect matchings.

From Figures 8.1 and 8.2, we can see that looking from the top each pyramid partition
corresponds to a domino tiling of the square grid. From a pyramid partition, we can obtain
a pure dimer covering on a rail-yard graph by the following steps:

(1) rotate the pyramid partition clockwise by 45 degrees,

(2) For each blue vertex vy, assume it has 4 incident edges ey, e2, €3, 4. Assume that eq
and eg (resp. ez and e4) are to the left (resp. right) of vy,. Split each blue vertex vy
of the dual graph into 3 vertices, vy, , vp,, vp, such that v, and vy, are blue vertices
while vy, is a red vertex. The red vertex vy, has exactly two incident edges joining
it to vp, and vy, respectively. v, has 3 incident edges e; ez and (vp,,vp,); while
vp, has 3 incident edges e eq and (v, vp, ).

(3) If one of e, ea (resp. e3,e4) is in the dimer covering, while neither es nor e4 (resp.
neither e; nor eg) are in the dimer covering, make (vp,, vp,) (resp. (vp,,vp,)) present
in the dimer covering and (vp,,vp,) (resp. (vp,,vp,)) absent in the dimer covering.

See Figure 8.3 (resp. Figure 8.4) for the pure dimer covering on a rail-yard graph corre-
sponding to the pyramid partition on the left graph (resp. right graph) of Figure 8.2, in
which the rail-yard graph corresponding the the left graph (resp. right graph) of Figure
8.2 is bounded by the green curve.

Proposition 8.1. There is a one-to-one correspondence between pyramid partitions in Ag
and pure dimer coverings on the rail-yard graph such that for i € [—s..s — 1]

e a;, = L ifi is odd; and

e a;, = R ifi is even; and

e b, =+ ifi <0; and

e b, =—ifi>0.
Equivalently, there is a bijection between pyramid partitions in Ag and sequences of parti-
tions (A AT XO XD XG)Y such that

P =29 < A L \Est2) A0 o A1) N@) e A6 = g,

Proof. See Lemma 5.9 of [37] and Proposition 8 of [8]. O

The formula to compute partition function of pyramid partitions was conjectured in
[20, 35] and proved in [36, 37].
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F1cURE 8.1. Pyramid partition with two types of bricks: each grey brick
has a vertical central line while each white brick has a horizontal central
line. The left graph is the pyramid partition with maximal number of bricks
(fundamental pyramid partition); the right graph is obtained from the left
graph by removing 3 bricks.

FiGURE 8.2. Looking from the top, pyramid partitions correspond to
domino tilings, which are equivalent to perfect matchings on the dual graph.
The left graph is the domino tiling corresponding to the fundamental pyra-
mid partition, as shown in the left graph of Figure 8.1; the right graph cor-
responds to pyramid partition with 3 bricks removed from the left graph,
as shown in the right graph of Figure 8.1.

Consider the pure dimer coverings on rail-yard graphs corresponding to pyramid parti-
tions. Then we have m = 2, V; = 0 and V) = —V5. Assume n = 2; we obtain

When G, is defined by (6.1), we obtain that the frozen boundary has the following
parametric equation (parametrized by w):

U(w)_ —2K
{Ié‘w)—62

flew™) = wg(w).

where
1 1
f(s) = - - -
(s) 1—7115 1+T218
and
(w) 1 1 1 1 1
w = — —_ —
g w—eViryt w—eVeryt w—eVoryt  wreVingt wteter, b w4 eVory
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L+ R+ L+ R+ L+ R- - R- - R-
FIGURE 8.3. Pure dimer covering on a rail-yard graph corresponding to
domino tiling on the left graph of Figure 8.2, where the subgraph corre-
sponding to the square grid in Figure 8.2 is bounded by the green curve.
L+ R+ L+ R+ L+ R— L— R— L— R—
FIGURE 8.4. Pure dimer covering on a rail-yard graph corresponding to
domino tiling on the right graph of Figure 8.2, where the subgraph corre-
sponding to the square grid in Figure 8.2 is bounded by the green curve.
and
(1 + e Xwry)
U. = —
x(w) (1 — e Xwmy)
Rlw) — (1+ e Yown) (1+e2wn) (1 - e Vimrw)
W= (1—eVown)(1—eV2wrn) (1+ e Vinuw)
By (7.13), (7.14), we obtain

pre = max{pe {0,1,2}: et < w}-
por = max{pe€{0,1,2}:w < —e'?7;'}.

y (7.17)-(7.20), we have

e w < 0: then

[

lim arg[R(w + ie)]

T
€0+ - Ele(PQ,R7p2,R+1)=+
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and

N m
61_1>%1+arg[U (’LU+16)]2 = 51—7'2<6wa1

e w > 0: then

lim arg[R(w + ie)]% =z

Pare;wl 2 1b1(p1,L7p1,L+1):+

and

. 1
61_1)m+ arg[U (w + 16)] 2 = 1eXw*1<Tl

In order to make

lim arg[R(w + ie)]% = lim arg[U,(w + iG)]%,

e—0+ e—0+

e have

) If w > €V27'1 , eXw™l e (0,7);

2) Ifw e (1t e2r Y, eXw™ € (11, 00);

3) Ifwe (e VOT 1, VlTl_l), eXw=t € (0,7);
) If w e (0, 6V07'1 ), eXw™t € (71, 00);

5) If w < —e"2r, L eXw ! e (=7, 0);
)
)
)

6) If we (- 6V2T§1, eVngl), eXw! € (—o00, —m);
) Ifwe (—eiryt, —eVor ), eXw™ € (—7,0);
(8) If we (— V072 ! 0) eXw™t € (—o0, —m);
Hence for each w € R\{:I:eVPT ; 0} peqo,1,23,je{1,23, We can find a unique y satisfying (1)-(8)

and f(eXw™!) = wg(w); then knowing w and x we can find a unique x by R((wu;) =e "k

See Figure 8.5 for frozen boundary of pyramid partitions.

8.2. Steep tilings. A domino is a 2 x 1 (horizontal domino) or 1 x 2 (vertical domino)
rectangle whose corners have integer coordinates. Let s be a fixed positive integer. An
oblique strip of width 2s is the region of the Cartesian plane between the lines y = x and
y = 2s. A tiling of oblique strip is a set of dominoes whose interior are disjoint, and whose
union is the tiled region R satisfying

{(z,y) eR*:z—ye[l,25-1} CRC {(z,y) eR* 1z —y € [-1,2s + 1]}

A horizontal (resp. vertical) domino is called north-going (resp. east-going) if the sum of
the coordinates of its top left corner is odd, and south-going (resp. west-going) otherwise
(see [?]). A tiling of an oblique strip is called steep if moving towards infinity in the
northeast (resp. southwest) direction, eventually there are only north- or east-going (resp.
south- or west-going) dominoes.

For each given sequence (by, . .., bas) € {£1}%%, and each left and right boundary condi-
tion M@ and A25+D)_ there is a one-to-one correspondence between pyramid partitions in
A4 and pure dimer coverings on the rail-yard graph such that for i € [0..2s]

(1) a; = L if i is odd; and
(2) a; = R if i is even.
The formula to compute the partition function of steep tilings was proved in [8].

In Appendixes A and B, we include some known technical results.
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o= <
0 fx A
1 -
2 I~ = 2 - —
3 u
4 4
4 - u
6 | I |
-5 ‘ : ‘ 1 0.5 0 0.5 1
-1 0.5 0 05 1

FIGURE 8.5. Frozen boundary of pyramid partitions with parameters Vj =
—1, V4 =0, Vo = 1. The left graph has 71 = 7 = 1, the right graph has
T = 10,7‘2 = 1/10.

APPENDIX A. MACcDONALD POLYNOMIALS

Let Y be the set consisting of all the partitions. For A\, u € Y, we say A < p if
o [\l =|ul;and ‘
o foralli e N, 3% \j <375, py; and
o \F L.
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Let X = (x1,...,2pn,...) and Y = (y1,...,Yn,...) be two countable sets of variables.
Let Ax be the algebra of symmetric functions of X over C.

For each pair of parameters ¢,t € (0,1) and each partition A € Y, define the normalized
Macdonald polynomial to be a symmetric polynomial as follows:

Py(5q,t) = mx+ > un (g, t)my
B

where uy ,(¢,t) € R and {m,},cy are the monomial symmetric polynomials; see [30]. It
is known that {P\(X,q,t)} ey forms a linear basis for Ax.
The power symmetric functions are defined by

(A1) po(X) =1;
(A.2) pi(X)=> 2},  VieN
JjEN

Let A € Y, define
pa(X) = [ [ pr(X).
1€EN
Then {px(X)}ey is a linear basis for Ax.

For each fixed pair of parameters ¢,t € (0,1) and A\, u € Y define the scalar product
(-,-) : Ax x Ax — R as a bilinear map such that:

1) v o
1—qg™ s

(A.3) (P2, Pu) = Oxp H T H] M (m; (\))!

j=1

=1

where dy, = 1 if and only if A = p, and m;(A) is the number of parts in A equal to j. Note
that the scalar product defined above depends on parameters (q,t). However, when ¢ =t
(A.3) does not depend on g or t.

Define Q(X;q,t) to be a multiple of Py(X,q,t) such that

<P)\(X7Q7t>7Q)\(X7 qat)> =1

For A\, u € Y, define the skew McDonald symmetric functions by

PA(X,Y;q,t) = Y Pyu(X;q,6)Pu(Ysq,1);
neY

QNX,Y5q.t) = ) Quu(X:q,)Qu(Y;q.1);

neyY
It is known that (see Remarks 1. on Page 346 of [30]) for a single variable x
Pyju(x) = 5u</\¢>\/u(q7t)$p\|7lul; Qx/p(r) = 5ﬂ<)\¢>\/u(q,t)x|)‘|*‘“‘
where 9/,(q,t) and ¢,/,(q,t) are independent of = and furthermore
wA/;L(Q7 t)lq:t = ¢A/u(Q7 t)‘q:t =1

Let A\, p € Y, we write X\ C p if
o \; < u;, for all i € N.
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Lemma A.1. Let X be a countable set of variables, then
Py/u(X5q,t) = Q/u(X;q.8) =0
unless ;1 © \. When p C A, Qy/,(X;q.t) and Py, (X;q,t) are homogeneous in X of degree
Al = |l
Proof. See (7.7) on Page 344 of [30]. O
In particular, when g = ¢,
PA(X5t,t) = Qa(X;t, 1) = sa(X);
(A4) P)\/M(X;tat) :Q)\/M(X;tvt) :SA/M(X)'
See (4.14) on Page 324 of [30].

Definition A.2. Let r > 0 and q,t € (0,1) be parameters. Let D_j x be an operator
acting on symmetric functions Ax. For any analytic symmetric function F(X) satisfying

F(X)=> e\P\(X;q,1),
AeY

where cy’s are complex coefficients, define D_j, xF' € Ax to be

I(N)

(AB)D g x gt F(X) = enq (L=t7%) | D (Mt HF | +7MN 5 Py (X5 q,1).
AEY i=1
Let W = (wy,...,wy) be an ordered set of variables. Define
k wktk_i’ Ws qw, k
(—]_)k*l Zi:l wigh—1 (1 - 7)(1 T tw dw;
(A.6) D(W;q,t) = . i i
i comy oy conmerray )(ww,l)ZHl m
qui qWk—1 wj wj

Recall that H(W, X; q,t) was defined as in (4.2).

Proposition A.3. Assume one of the following two conditions holds
(1) ¢ € (0,1) and t € (0,1); or
(2) g€ (1,00) and t € (1,00).
Let f : C — C be a function analytic in a neighborhood of 0, and f(0) #0. Letg: C — C
be a function analytic in a neighborhood of 0, and
fz) .
9(z) = flg1z)’
for z in a small neighborhood of 0. Then

(A7Dkxqt<Hf:cz> (fo>]{ fDWq, H(W,X;q,t) <ngl>

x, €X z, €X

where the contours of the integral satisfy the following conditions

all the contours are in the neighborhood of 0 such that both f and g are analytic;
each contour enclose 0 and {qz;}zex;

If case (1) holds, |w;| < [twiq1| for all i € [k —1];

If case (2) holds, |w;| < Hwiﬂ‘ for alli € [k —1];

H(W,X;q,t) is given by (4.2), and D(W;q,t) is given by (A.6).
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Proof. When X consists of finitely many variables and when case (1) holds, the proposition
was proved in Proposition 4.10 of [15]. It is straightforward to check the Proposition when
case (2) holds by (4.5).

When X consists of countably many variables, the identity (A.7) holds formally, since its

projection onto any finitely many variables (x1,...,z,) by letting 41 = Tp42 = ... =0
holds. ([l
Lemma A 4.
(A.8) > P(X;q, )0t =] Uit _ I(X,Y;q,t)
= i (@il @)oo

where

o0

(a,9)o0 = [J(1 = ag").

r=0

Moreover

D> PA(X;q,0)Pu(Yit,g) = Y Qa(X;0,)Qx (Y5t q) = [ (1 + iyy).

AEY AEY %,

In particular, when ¢ =t we obtain the Cauchy identities for Schur polynomials.

AeY i, 1- Lilj
Zs)\ Jsa (Y H(l—l—xiyj).
AeY 2

Proof. See Section VI (2.4) (2.5) and (4.13) of [30] for (A.8); See Section VI (5.4) of [30]
for (A.9). O

Definition A.5. Let A be a graded algebra over a field F. For a € A, define ldeg(a) to
be the minimum degree of all the homogeneous components in a.

Lemma A.6. Let {di}r {ux}r be two sequences of elements of graded algebras A and B.

Assume limy_, oo ldeg(dg) = oo and limyg_,o ldeg(uy) = oo. For each non-negative integer

k, let py be defined as in (A.1), (A.2). Then

o) o) o0 k
<exp (Z dkpl]z(y)> ,exp (Z UkpZ(Y)>> — exp <Z < q dkuk)>
k=1 k=1 k=1

where ay, by are independent of the variables in Y .

Proof. See Proposition 2.3 of [4]. O
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Lemma A.7.
(A.10) (X, Yi0,1) = exp (fjl — ipn<X>pn<Y>> ;
(A.11) 110+ i) = exp (i Hr)anpn(X)pn(Y)> :

i =
(A.12) H % — exp <§:1 (—1)"+17(11 - qn)pn(X)pn(Y)>
(A.13) H(X,Y:q,t) = exp ( 001 ! _;_npn(le)pn(Y)> .

Proof. The identity (A.10) follows from Page 310 of [30]. The identity (A.11) follows from
the fact that

110+ i) = (=X, v;0,0)] 7"
,J
The identity (A.12) follows from the fact that
1 i -
[ 5% = =X, v50,74)]
i 1+ q 3y
Finally, the identity (A.13) follows from the fact that
H(X,Y;q,t) =T(gX ™1, Y;0,471).
O

Definition A.8. Let F' O C be a field. Let A be a (Z>o-)graded algebra over F. For each
nonnegative integer n, let A, denote the n-th homogeneous component of A. Given a € A,
define ldeg(a) to be the minimum degree among the homogeneous components of a.

The completion A consists of formal sums Y7 | a, where a, € A,. For two graded
algebras A, A" over F, let A®r A" be a graded algebra over F such that for a € Ay, and
deA,avd € (ARp A)pmin. Let AQp A’ be the completion of A@p A'.

If B is a graded algebra over C, let Br be the graded algebra B ®c F over F, i.e.
the extension of coefficients from C to F. Let Ax|[F| denote the F-algebra of symmetric
functions in X = {x1,x2,...}, with coefficients in F.

Definition A.9. Let A and A’ be graded algebras over C and {ay_j}; be a basis for A, for
each n > 0. We say that an element f € ARA'[F] is A-projective if

F=) an;®al;,  a; € A(F)
n7j

such that

. . / o
nh_)rgo min ldeg(ay, ;) = oc.

This property is independent of the choice of basts.
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Definition A.10. Let A, B be graded algebras over C, and let FF D C be a field. Define
the Macdonald scalar product to be the bilinear map

(AR Ax) [F] x (Ax ® B)[F] = A® B[F]
such that
(a® Py,Qu®b)x = (P\,Qu)a®b=10\,a®Db.
Definition A.11. Let
Z = (z1,...,2k);

where k is a positive integer. Let L(Z) be the field of formal Laurent series in the variables

{21 22 Zk—1 }
IEVEEREE )y Rk (-
z9 Z3 Zk
Let $ dZ : L(Z) — C, such that for each Laurent series f € L(Z), ¢ fdZ is the coefficient
of —— in f.
2102k

The following lemma about the commutative properties of the residue operator and the
Macdonald scalar product was proved in [1].

Lemma A.12. (Lemma 3.8 in [1]) Let A, B be graded algebras over C, let f € ASAx[L(Z)]
and g € Ax®B[L(W)]. If f is Ax-projective, then

< ¢ fdz,g>X ~ fis.9)xaz
<f, ¢ gdZ>X ~ fis.9)xaz

Lemma A.13. Let A € Y and let
falgt) = (1=1) ) (¢ — !

i>1

Then
f)\(Q7 t) = f)\’(t7 Q)a
Proof. See Example 1 in Sect. VI 5 of [30]. O

APPENDIX B. OTHER TECHNICAL RESULTS
The following technical lemma is elementary, as proved in Lemma 5.7 of [1]
Lemma B.1. Let 0 € (0,7), and £ > 0. Define
Rege :={w e C:dist(w,[1,00)) <& N{w e C:|arg(w— (1 —¢€))| < 6}.

Let o > 0 and suppose N(e) € Z > 0 such that limsup,_,qeN(e) > 0 as e — 0. Then for
any fized 6 € (0,7),& > 0, we have

Ez;e_eiN(e) _ 11—z aexp 0 emin{|z|, |z|?}
(emc@z5e ) n(e) 1—e <Ny |1 — 2|

uniformly for z € C\ Reg¢ and € arbitrarily small.
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Lemma B.2. (Corollary A.2 in [15])Let d, h,k be positive integers. Let f, gi,..., gq be
meromorphic functions with possible poles at z1, ..., zp. Then for k > 2,

1 1 d k k
WY{”‘%(%—M)-“. ]1_11 ;93'(%') il_[lf(vi)dvi

oo (v —vg—1) -

kd_l

d
= o ff(v)kggj(v)dv.

where the contours contain {z1,...,zn} and on the left side we require that the v;-contour
is contained in the vj-contour whenever i < j.
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