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Abstract: Identifiability is of fundamental importance in the statistical learning of dynamical
systems of interacting particles. We prove that the interaction functions are identifiable for a
class of first-order stochastic systems, including linear systems and a class of nonlinear systems
with stationary distributions in the decentralized directions. We show that the identfiability is
equivalent to strict positiveness of integral operators associated to integral kernels arisen from
the nonparametric regression. We then prove the positiveness based on series representation of
the integral kernels and a Miintz type theorem for the completeness of even polynomials.
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1 Introduction

Dynamical systems of interacting particles or agents are widely used in many areas in science
and engineering, such as physics [DCBCO06], biology [BT13], social science [MT14, BT15]|, and
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we refer to [VZ12, CCP17] for reviews. With the recent advancement of technology in data
collection and computation, inference of such systems from data has been attracting an increasing
attention [HRPM™11,CNHT17,HLL19|. In general, such systems are high-dimensional and there
is no simple parametric form, so the inference tends to be computationally infeasible due to the
curse of dimensionality. An exception is when there is a symmetric structure, such that one only
needs to estimate a low-dimensional interaction function, for example, depending on only the
pairwise distances between particles [LZTM19,LMT19|. However, a fundamental challenge arises:
the interaction function may be non-identifiable, because its values are under-determined even
with perfect trajectory data. To ensure the identifiability of the interaction function, a coercivity
condition is introduced in [LZTM19,LMT19]|. In this study, we prove that the coercivity condition
holds true for linear systems, and a class of three-particle nonlinear systems with stationary
distributions.
More precisely, consider a first-order stochastic gradient system of interacting particles:

1 X' - X;
X} =~ > Xk - X|)—dt+adBt fori=1,...,N, (1.1)

1<j<N,j#1i | J |

where X! € R? represents the position of particle i at time ¢, {B{}Y | are independent Brownian
motions representmg the random environment, and o is a positive constant representing the
strength of the noise. Without loss of generality, we assume ¢ = 1 in (1.1). Hereafter | - | denote
the Euclidean norm of vectors. We assume that the agents are of the same type, with a function
¢ : RT =[0,00) — R modeling the pairwise interaction between the agents, which is referred as
the interaction function.

In the inference of the interaction function by nonparametric regression, the following coer-
civity condition is found to ensure identifiability [LZTM19,LMT19]|: for any compact subspace
H < L?(p;), where p; denotes the probability density function of |r};| with rf; := X' — X7,

cun(®) = inf | Rt (et Tz | S g (1.2)
HNAY ™ etinoB, 12 B et | et ’ )

where 0B; denotes the unit sphere in L?(p;).

We prove coercivity condition for systems with a class of interaction functions, particularly
for ¢(r) = r which leads to linear systems, and for three-particle nonlinear systems with ¢(r)
dominated by r* for a € (0,1] and with a stationary distribution. We first show that the
coercivity condition is equivalent to the integral operator associated with the expectation is
strictly positive definite. In fact, note that

Ef (et )h(rt) iz 18] f j () (r, s)drds

|7 12"7'13’

where the integral kernel K, : R* x R* — R with ¢ € [0, 7] is defined as

K)o (o™ | [ ccmmtrs e, (1)

with p;(u,v) denoting the density function of the random vector (riy,r%;) and S?~! denoting
the unit sphere in R?. Thus the coercivity condition is equivalent to that the integral operator
associated with the integral kernel K, is strictly positive. Then, to prove the strict positiveness



of the operator, we introduce a series representation of the integral kernel and resort to a Miintz
type theorem on the completeness in L?(p;) of polynomials with even degrees (Section 3). In
particular, in the treatment of nonlinear systems, we develop a “comparison to a Gaussian kernel”
technique (Section 4.2-4.3) to prove the strictly positiveness for a large class of interaction kernels.

In this study, we consider only regular interaction kernels that lead to continuous drift terms,
and thus a global strong solution to the system. Many directions are beyond the scope of
this study and will be left for future works: first-order nonlinear systems with more general
interactions kernels that are regular [HLL19,LZTM19] or singular [LY16,LLY19] or starting from
non-stationary distributions, second-order systems and systems with multiple types of particles
or agents [LMT19].

Positive definite integral kernels play an increasingly prominent role in many applications
in science, in particular in statistical learning theory in data science [CS02,SZ09, Fas11|. Our
results provides a new class of positive definite integral kernels, and our technique of comparison
to a Gaussian kernel may be used to establish identifiability in other learning problems.

The organization of the paper is as follows: in Section 2, we introduce the coercivity conditions
in inference, and establish the connections between the coercivity conditions and positive integral
operators. In Section 3 we prove the coercivity condition for linear systems and Section 4 is
devoted to a class of three-particle nonlinear systems with stationary distributions. We list in
Section 5 the preliminaries for the proofs, such as the properties of positive definite kernels, a
Miintz-type theorem on half-line, and a stationary measure for gradient systems.

2 The coercivity conditions and strictly positive integral operators
In vector format, we can write the system (1.1) as
dX' = -V Jy,(X")dt + dB* (2.1)

where X' := (X)X, e RV4 and the potential function Jy : RV — R reads

i1

1 .
Jp(X) = Wﬁ;ﬁf(lwi —zj), xeRY with ®(r) = ¢(r). (2.2)

In this study, we assume that ® e C'(R*, R*) such that for p(X) := e’+(X)
(H1) /p e W2(RN? dX) with dX being the Lebesgue measure;

(H2) |[VJ,(X)] € LN4<(RN4 p) for some € > 0.

Then, by [AKRO03], there exists a diffusion process satisfying the above equation. In particular,
the diffusion operator leads to a strongly continuous semigroup on L?(R™? p). Further, we
assume that the initial condition satisfies a distribution that is exchangeable and absolutely
continuous with respect to the Lebesgue measure.

2.1 The coercivity condition in nonparametric inference

Given observations of sample trajectories { X®71™IM_ for the system with interaction function

Ptrue, ONE Obtains an estimator of the interaction function by minimizing the likelihood ratio of
these trajectories:

. | | L <
O = arg;nln EM(p),  with EM(p) := i Z Extorrm ()

m=1



where €yo,m1.m(¢) denotes the likelihood ratio of the trajectory X [0Thm and is given by the
Girsanov theorem (see e.g. [Kut04])

1 T
Exton () = L (IVJo (X2t + 20V T (X1, dX) .

The function space of learning is L?(pr). Here pr is the distribution of all the pairwise
distances {| X} — X’|,t € [0,T]};;, and by the exchangeability of the distribution of X* (which
implies that all the pairs X} — X 2 have the same distribution), it can be written as

T
pr(r) = 7 | )t with () = BLS(XE - X5 = )] (23)
Here p;(r) denotes the probability density function of | X! — X|. Tt is straightforward to show
that it exists and is independent of (i, j) by exchangeability, as long as the initial distribution pq
is exchangeable and absolutely continuous with respect to the Lebesgue measure.

In proving the consistency of the estimator (convergence to the truth as data size M — ),
one controls the error of an estimator ¢ by the discrepancy between the empirical likelihood
ratios, EM(p) — EM(@grue), which converges to EE x0.71(p) — EE 0,71 (Pirue) by the Law of Large
Numbers. Noting that dX, = —VJ,, .. (X;)dt + dB; and that J, is linear in ¢, we have

[VI(XT)Pdt + 2V J,(XT),dX")
=V I (X |[Pdt — 2V I, (X"), V... (X0)ydt + (VJ,(X"), dB")
:HVJSO_(Pt'rue (Xt)Hth - HVJ‘Pt'rue (Xt)‘ 2dt + <VJSO(Xt)7 dBt>7

and hence

1 T
EEx0m(9) = g | EIV o XVt + EEtom (9ume)
0

A control on the error of the estimator h = ¢ — e, can then be realized, if the following
inequality holds true

oo || EIV P el (2.4

for some constant Cr > 0 for all estimators.

Also, by exchangeability, with notation rﬁ»i =X 3 — X, we have

1 2 ¢ T T (N = 1D)[(N —2)1123 + 1122]
NEHVJh H Z Z T D |’I"] H,r |] = N2 )
J,k=1, ki
J#1, k;éz I‘fk

where the equality follows from that I(ijk) = 1(123) for all triplets {(4, j,k),j # i,k # i,j # k},
contributing N (N — 1)(N — 2) copies of 1(123); and that I(ijk) = 1(122) for all for all triplets
{(i,7,k),j = k # i}, contributing N (N —1) copies of I195. Note that I 59 = E[h(|U|)?]. Therefore,
Eq.(2.4) is equivalent to

T

t t 1
+ [ Binra et HE T 0t > o [ B

[71o |75 T Jo



. 2 _
with CN,T = (N—ljglm(CT — %)
Since in practice the true interaction function and estimators are in a compact subspace
H < L*(pr), eg. H = WEP(R"), the above inequality motivates the following coercivity

loc
condition, so as to ensure the convergence of the estimator.

Definition 2.1 (Coercivity condition on a time interval) The dynamical system (1.1) on
[0, T] with initial condition X° is said to satisfy the coercivity condition on a compact subspace

H < L*(pr), with pr defined in (2.3), if

L[ Epn(iry a2 18241 - (25

CyrT = in —

het 1l 2o =1 T Jo 7o||7ls
where r’;’j = X!~ X;. If the coercivity condition holds true on every compact subspace H <
L3(pr), we say the system satisfies the coercivity condition.

We remark that the above coercivity constant cy p is independent of N, the number of
particles in the system. This suggests the interaction function can be identified from the mean
field equation of the system when the number of particles are large.

The above coercivity condition involves the average-in-time density pr, which is difficult to
track in general. It is more convenient to consider a single-time version.

Definition 2.2 (Coercivity condition at time t) The dynamical system (1.1) with initial
condition X° is said to satisfy the coercivity condition at time t on a compact subspace H <
L*(py), where p; is defined in (2.3), if

n(®) = b E[h(r (i) 2T < (2.6)

het, [l 12, =1 7ol 7l
where 'rfj = Xf—X;. If the coercivity condition holds true on every compact subspace H < L*(py),
we say the system satisfies the coercivity condition at time t.

The coercivity condition at a single time indicates that the interaction function can be learned
from a large size of samples at a single time. This explains the observation in [LZTM19, LMT19]
that the kernel can be learned from multiple short-time trajectories.

2.2 Relation to strictly positive integral operators

We show in this subsection that the coercivity condition is equivalent to the strictly positiveness
of related integral operators on L*(pr) or L?(p;).

Recall that a linear operator ) on a Hilbert space H is positive if {Qf, f) = 0 for any f € H.
It is said to be strictly positive if it is positive and (Qf, f) = 0 implies that f = 0.

Proposition 2.3 The system (1.1) on [0,T] with initial condition X° satisfies the coercivity
condition if and only if the integral operator associated with the kernel

_ 1

'——rsd_llT (1€, s .
Rar): = =5 | || Cmmtremgana (2)

is strictly positive on L*(pr), where p;(u,v) denotes the probability density function of the random
vector (riy, rls).



Proof. Let Q7 denote the integral operator associated with Kr(r,s) on L?(pr), that is,

[Qrh](r JKT r, $)h(s)pr(s)ds. (2.8)

Note that for any h, g € L*(pr),

T t t
@rhg) = 7 [ Elb(irorty) 2 2

|"°12H""13|
1

T
< ff E[h(lr1))g(IrisD]dt < [hlL2r 9] z2gor) -
0

Thus, Qr is a symmetric bounded linear operator on L?(pr).
By definition, the coercivity condition is equivalent to that

inf drh,h) > 0
hEH, HhHL2<ﬁT>:1<QT >

for each compact subspace H < L?(pr). B

Clearly if the coercivity condition holds, then the operator Qr is strictly positive. For the
other direction, suppose that infjcy, HhHL2(5T):1<QTh7h> = (0 for some compact subspace H <
L?(pr). Then there exists a sequence {h,,}?° | < H with |, z2(5,) = 1 such that (Qrhy, hy,) — 0
asn — o0. Since the sequence is bounded and H is compact, there is an h, € H and a subsequence
P, — hy. This implies that |[h.|r2(5,) = 1 and (Qrhs, hs) = 0, contradicting to the fact that
Qr is strictly positive. m

Similarly, we have the following proposition for the coercivity condition at a single time.

Proposition 2.4 The system (1.1) with initial condition X° satisfies the coercivity conditions
at time t if and only if the integral operator Q; on L*(p;) associated with the kernel

1
Ki(r,s :z—rsdlf , r&, sn)dédn. 2.9
t( ) /)t(T);Ot(S)< ) i1 Sd*1<€ 77>pt< f 77) f n ( )
18 strictly positive.
Proof. Note that
E[h(rtgl ) 127182 $) K drds = (Qih, h
[ (’7’12‘) (|T13D‘T, H"‘ ’ tr 8)pt( ) t(s) r 8_<Qt ; >
1211713

The proof is similar to the proof of Proposition 2.3. =

With these operators, we can revisit the question on the relation between the two types
of coercivity conditions: whether it holds true on an interval if it holds true for each time in
the interval. Equivalently, whether Q7 on L?(pr) in Proposition 2.3 is positive if @, on L?(p;)
in Proposition 2.4 is positive for each time in [0,7]. Clearly, the question is subtle because
these operators are defined on different spaces: L%*(p;) and L?*(pr), and it requires additional
constraints on p; and pr, e.g. being equivalent. Instead of tackling operators on different spaces,
we provide a firm answer to the question for slightly modified operators, all on the space L*(pr),
in the following proposition.



Proposition 2.5 The integral operator Qr on L*(pr) associated with the kernel Kr in (2.7)

is strictly positive if {@t}te[o,T]; the family of integral operators on L*(pr) associated with the
kernels

Rilrys) = ——2 <rs>d—1‘[ (Emypi(re, sn)dédn, (2.10)
® s Join

pr(r)pr(s
are positive for all t and strictly positive for some t.

Proof. Note that for any h € L*(pr),

~ ri,,rt
Quhy = B[h(rty a2 02
705l 71s]
is continuous in ¢ € [0, T] since the diffusion operator of system (2.1) is a continuous semigroup.

Also, since the operator Qt is non-negative for all ¢ and positive for some ¢, so is <ch h). Noting
that

_ 1 (T ~
Qe = 7. | @b,
0
we have (Qrh,h) >0if h#0. m

3 The case of linear systems

3.1 A macro-micro decomposition

Consider first the simplest case ¢(r) = 0r, or equivalently, ®(r) = %97’2. The system (1.1) can
be written as

dX' = -0AX"'dt + dB", (3.1)
where the matrix A € RV49*N4 ig given by (with I; being the identity matrix on R¢)
(N —-1)1,4 -1, e -1,
1 -1 N-1)l; --- -1
A=~ . ( : s ) S (3.2)
—1 -1, e (N=1)1y

It is straightforward to compute that A? = A, and that the matrix A has eigenvalue 1 of
multiplicity (N —1)d and eigenvalue 0 of multiplicity d. Note that the vector {& = ¢(v,v,--- ,v)}
is a critical point of the deterministic system, for any constant ¢ € R and any vector v € R

By a macro-micro decomposition of the system as in [Mal03,CDP* 18|, the next lemma shows
that the center of the particles moves like a Brownian motion, and the particles concentrates
around the center with a Gaussian-like distribution.

Lemma 3.1 (i) The solution X' of Eq.(3.1) can be explicitly written as
t

Xt =e%"AX0 ¢ J e 'Y AdB* + X!, (3.3)
0

where X! = (vt,vt, .- vt with vt := %le\il X! = %vazl(X? + BY).
(i) Conditional on X°, the centralized process (Y' = X' — X') is an Ornstein-Uhlenbeck pro-

C

cess with marginal (in time) distribution N ( 0t AXO, 210(1 e A ) for each t. In particular,

if X° is Gaussian and exchangeable with variance X, then for each t, Y has a distribution
N (0, ATA + L(1—e")A).



Proof. Note first that vt := =3V X' = L3V (X9 + 1B!) follows from the equation

1
N
N 1N
- —N'dB!

Next, note that Y = X' — X!, = AX" and

1
N ¢

dY' = AdX' = —0A*X'dt + AdB' = —0Y'dt + AdB',

where we used A% = A in the third equality. Therefore, (Y*) is an Ornstein-Uhlenbeck process

t
Yi=e "Y'+ J e =9 AdB*.
0
Therefore, conditional on X°, with Y° = AX° and A? = A, we have that the distribution of
Y'is N( “"AX° L(1—e %) A) and that X' = X. + Y can be written as in (3.3).

' 26
If the initial distribution X" is exchangeable, then E[Y"] = AE[X"] = 0, because E[X"] =

E[X 9] for any (i,7). Thus, if X° is Gaussian and exchangeable, then Y is Gaussian with mean
0. The variance of Y follows directly from the above integral representation. m
We can also directly integrate Eq.(3.1) and write

t
Xt _ e—@AtXO +J e—@A(t—s)st'
0

But the distribution of X' conditional on X is '(e"*4*X?°, {i e~24%ds), in which the covariance
is difficult to compute explicitly due to the singularity of the matrix A. By introducing the
centralized process Y, though the distribution of Y* is degenerate with the covariance %(1 —

e %) A being singular, we no longer need to compute Sé e 24s(ds.

3.2 Coercivity condition for linear systems

Now we are ready to prove the coercivity conditions. We begin with two technical lemmas. Here
denote by cov(X,Y') the covariance of X and Y, with the convention that cov(X) = cov(X, X).

Lemma 3.2 Let (X,Y,Z) be exchangeable Gaussian random variables on R3 with covariance
satisfying cov(X) — cov(X,Y) = Al for some A\ > 0. Let p*(u,v) denote the joint distribution
of (X =Y, X — Z) and p*(r) denote the density function of | X —Y|. Then

(i) K*(r,s) : Rt x R* — R defined by
1

Mr,s) = —————
s = e

(rs)™! Ldl Ldl@ ,myp*(ré, sn)dédn (3.4)

is a nonnegative smooth function and in L*(p* ® p*).

(ii) The integral operator Q* associated with K*(r,s) is strictly positive on L*(p*). Equiva-
lently, for any 0 # h e L2(R*, pt),

(3.5)

E lh(\X ~Y)h(|X — Z\)<X — Y, X - Z>] 0

X —-YI||X - Z]

8



Proof. We first represent K*(r,s) in terms a series of polynomials. By exchangeability, the

random vector (X —Y, X — Z) is centered Gaussian with covariance matrix A (QIId 2[; ) , whose
d d
inverse is s 211‘1 g}] . Thus, the joint distribution is p*(u, v) = (2¢/37\)~%e~ax (vl ~Cw.v))
—lq 214

Combimng with the fact that

/2

with C = %(4)\)3F(g) and that the surface area of the unit sphere is |S?~!| = 2(

kernel in (3.4) can be written as

(7" S) Cde 12A(’” +5?) J J <€’ c>\rs<§n> dffiﬁ
Sd—1 Jgd—1

the integral

with Cy = (%) 4 and ¢, = - Here when d = 1, the above spherical measure on S° = {—1,1} is
interpreted as P({ = 1) = P({ = —1) = %, which is equivalent to that Ssd,l SSd*1<£’ n)e%(”@’"» |;fii{7|2 =

1/ cars —C\TS g
7(e7 —e77%). By Taylor expansion we have

S |
(&, mye>&m = kz_]l = 1),% Hrs)" e ),

and the fact that

d&dn =0 for odd k&
_ k ) y
b = Ldl Ld1<§’n> | Sd=1|2 { € (0,1), for even k,

we have
o0 o0 1
K*r,s) = Cye” 1ox (1 +s? Z c/\ka rs)¥ = Cye” 123 (1 +5%) Z Ec’;bkﬂ(?“s)k_l
k=0 k=1,k odd "’

Thus, K*(r, s) is non-negative smooth and in L?(p* x p*).
To prove (ii), since Q* is the integral operator associated with K*(r,s) on L*(R*, p*), we
have, for any h e L}(R*, p*),

(@, By = f " () K, )0 () (s)drds
i —c/\ka ( f ) h(r)rk—le—uﬂr"’pA(r)dr)Q > 0.

Lko
Note that "
f h(r)rk=te~ 2y r)dr = Cy J k+d*2e*3%72dr
0
By Lemma 5 9, a variation of the Miintz Theorem, the space span{l,r% r% r% ...} is dense in

L2(r?te=5x™). Thus, (Q*h, hyrz(»y = 0 only if h = 0. Therefore, Q* is strlctly positive. m



Lemma 3.3 Let (Xy,Y:, Z;) be a family of exchangeable Gaussian random variables on R3¢ with
covariance satisfying cov(X)—cov(X,Y) = A(t)I; with A(t) = e 2" Ao+ 55 (1—e%) fort € [0, T,
6 >0 and g > 0. Let p'(u,v) denote the joint distribution of (X, —Y:, Xy — Z;), p'(r) denote
the density function of | Xy — Y|, and let

p(r): = %Jo Pt (r)dt. (3.6)
¢ = —1 rs)t! H(ré, s
Ri(ros) s = —msra)™ || ccompt o smded 3.)

Then the integral operators {@t}te[O,T] on L?(p) associated with K is uniformly bounded, contin-
uwous in t, and strictly positive for each t.

Proof. The proof is similar to the proof of Lemma 3.2: we represent K !(r,s) in a series of
polynomials and prove that the operator Q! is positive by the Miintz Theorem. First, note that

~ 1
Kt r,s)= O Y
129 = Cano 57750

. Then, for any h € L*(R*, p),

ded
d—1 —C/\(T2+82) C)\TS<£777>—T]
(TS> e J:gd—l Sd—1<§7 77>€ |Sd_1 |2

with Cd,A(t) > (0 and C) = ﬁ(t)

0

(Q'h, Wy = L h(r)h(s)K*(r, s)p(r)p(s)drds

o 1 0e) L 2
= Ca) Z ycibkﬂ (L h(T)THd_Qe_WT dr) = 0.

k=1,k odd

Then it follows from Lemma 5.9, a variation of the Miintz Theorem, the space span{1, r% r4 76 ...}
1 ~ ~

is dense in L2(Td*16_3k<t>7"2). Thus, (Q'h, k)25 = 0 only if h = 0. Therefore, Q" is strictly posi-

tive. m

Theorem 3.4 Suppose the linear system (3.1) starts with an initial distribution of (X9,..., X%)
that is exchangeable Gaussian with covariance satisfying cov(X7) — cov(X7, X9) = Aol with
Ao >0 foralll <i<j<N. Then, (i) the coercivity condition holds true at each time t = 0 in
the sense of Definition 2.2; (ii) the coercivity condition also holds true on [0,T] in the sense of
Definition 2.1.

Proof. Let Y' = X' — X'. Note that
P X - X - Y oY

Thus, the coercivity conditions for the process (X") is equivalent to those for the process (Y).

By Lemma 3.1, (Y, ..., YY) is exchangeable Gaussian with covariance satisfying cov(Y") —
cov(Y,Y") = [e7 Xy + 5;(1 — e7%)] I;. In particular, the vector (Y, Y}, Y§) is exchangeable
Gaussian with cov(Y}) — cov(Y],Y") = (e72" + (1 —e7)) I;. By Lemma 3.2, the integral
operator associated with the kernel (2.9) is strictly positive on L?(p;). Part (i) then follows from
Proposition 2.4.

Part (ii) follows from Proposition 2.5 and Lemma 3.3 because (X, X}, X4) are exchangeable
Gaussian satisfying the covariance condition with A(t) = e™2Xg + 55(1 — e %) for t € [0,7]. =

10



Remark 3.5 When the system is deterministic, i.e. there is no stochastic force, the coerciv-
ity conditions hold true when the initial distribution is exchangeable Gaussian with cov(X") —
cov(X7, X9) = Noly. In this case, we simply have X' = ¢ " AX? + X and Y' = e " AX".
Then the vector (Y1,Y,Y5) is exchangeable Gaussian with cov(Y'}) —cov(Y,Y5) = e 2 )\g1,.
Again coercivity follows from Lemmas 3.2-3.3. In particular, this holds when the initial distribu-
tion is standard Gaussian, in which case \g = 1.

3.3 Coercivity condition for non-radial interaction functions

The covariance condition cov(X?) — cov(X?, X?) = Moly in Theorem 3.4 is necessary for the
above proof, due to the need of series representation of the radial integral kernel K;. This
condition can be removed when we prove the coercivity condition based on a series representation
of the corresponding non-radial integral kernel. More importantly, we show in this section that
identifiability holds true for interaction functions that are non-radial, depending on the pairwise
differences between positions.

It is straightforward to see from Section 2.1 that for non-radial interaction functions, the
function space of learning is L*(R?, pr) or L?(RY, p;) with

1 T

pr(r) = ff pe(r)dt,  with p(r) = E[0(X] — X; —7)]. (3.8)
0

Correspondingly, the coercivity condition is on these functions spaces.

Definition 3.6 (Coercivity condition for non-radial functions) The dynamical system (1.1)
on [0, T with initial condition X° is said to satisfy the coercivity condition on a compact subspace

H < L2(RY, pr), with pr defined in (3.8), if

1 T t t
Cour = inf J E[h(rt,)h(rt,) 1218200 < (3.9)

mn —
heH, ”hHLQ(ﬁT):l T 0 ‘T‘ﬁQHri?}’

where 'rﬁj = X! - X; If the coercivity condition holds true on every compact subspace H <
L3R4, pr), we say the system satisfies the coercivity condition. Similarly, we can define the
coercivity condition at a single time t on L*(RY, p;).

Propositions 2.3 and 2.4 can be directly generalized to the non-radial version. So we may
prove the coercivity condition by showing that the corresponding integral operator is strictly
positive. The proof will be based on a series representation of the non-radial integral kernel.
First, we need a key lemma showing that polynomials are dense on some weighted L? spaces.

Lemma 3.7 [Sch92, Lemma 1.1| Let u be a measure on R? satisfying
Je”'du(a:) < w

for some ¢ > 0, where |z| = ijl |z;|. Then the polynomials are dense in L*(p).

Proposition 3.8 Let X,Y,Z be exchangeable Gaussian random variables on R® with a non-
degenerate distribution. Let p(u,v) denote the non-degenerate joint density of (X —Y, X — Z)
and let p(u) denote the density of X —Y . Then the integral operator Q) associated with the kernel

1
K(u,v) := m<u,v>p(u,v) (3.10)

is strictly positive on L*(RY, p).
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Proof. Since h e L*(R%, p) and XY, Z are exchangeable, we have by Cauchy-Schwarz

(X-Y,X-2)
X -Y[IX - Z|

KQh, g)| = |E[A(X — Z)g(X — Z) 1} < 1Az l9lz20)
so @ is a bounded operator on L?*(p). To show that @ is strictly positive, we need to prove (i)
{Qh,hy =0 for any h € L*(p), and (ii) (Qh,h) =0 = h = 0 in L*(p).

Proof of (i): to show that for all h € L?(p),

(Qh, h) = H o) “|> (u, v)dudv = 0, (3.11)
by Theorem 5.2, it suffices to show p(u,v) is positive definite. Suppose that X,Y,Z ~ N(u,X)
with ¥ invertible since the distribution is non-degenerate. Decompose X! = LLT. Then L(X —
1), L(Y — ), L(Z — ) ~ N(0,I). Denote them by X,Y, Z, respectively. By Theorem 5.2, it
suffices to show the density of (X’ Y. X-Z ) is positive definite. Since X,Y, Z are exchangeable,
cov(X,Y) = cov(X, Z) = cov(Y, Z). Let © = cov(X,Y) = E[XYT]. Since O is real symmetric,
it can be diagonalizable by a real orthogonal matrix P. Write POPT = diag(\, ..., \y), where
—1 < \; < 1 by the non-degeneracy assumption. Denote PX, PY,PZ by X', Y, Z' respectively.
By Theorem 5.2 again, it suffices to show that the density ¢(u,v) of (X' —Y’, X' —Z’) is positive
definite. Then the covariance matrix

I-06 2[-20]’

cov(X' =Y X' - 7') = [21_2@ [=© ]

which has the inverse (by the non-degeneracy assumption)

1 —
cov(X' =Y, X' = 27 = 5 [E//\\ QJﬂ

where A := diag( Thus for some normalizing constant Cy > 0, ¢(u,v) is equal to

1
1-XA17 7" 1— )\)

Cyexp(—1(u,v)cov(X' =Y, X' — Z') " (u,v)")

d 2 d 2 d
= (Cyexp % Z

St e S
i=1 i—1 1

By Theorem 5.2 and the fact that —1 < \; < 1, g(u,v) is positive definite. Then (i) is proved.
Proof of (ii): Let h € L*(p) satisfy (Qh, h> = 0. We need to prove that h = 0. Denote

a; =

1-x = 2 y
b(u) := exp( gz
14

f(u,v) :==exp 521 SUV; ).

By the linear transform X — PL(X — ), we may rewrite (3.11) as
d
Qh 1 = Catdet L7 Y. [ [ 9)(w)gs0) (. 0)dud,
j=1
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where g;(u) = b(u)h((PL)_lu)% Note that by Taylor expansion

flu,v) = Z T Z auwv)* =Y Y Criyeia (o)™ - (ugua)™,
k=0 k=01i1+...+ig=k

which is a linear combination of all the d-variable monomials u!' - - - uif and all coefficients are
positive. Thus by Fubini

(Qh,hy = Cy(det L)* > > Chy..., fg]() Loultdu)? = 0 (3.12)

] kll ..... i

which implies each term must be zero
Jgj(u)ui1 - undu = 0, for any integers iy, ...,iq = 0.

Then for any polynomial ¢(u) we have

| stwoan -0

Note that the marginal density of (X’ — Y’ X' — Z’) is equal to

q(u) 1=Jq(u,v)dv— exp(— Zaz

for some normalizing constant C’; > 0. Then h(u) € L?(R?, p) implies h((PL)"'u) € L*(R%, q).
Let gj(u) := exp(—15 Z?Zlaiu?)h((PL)*lu)%. Since |g;(u)| < |[W((PL) 'u)|, we get
g;(u) € L*(R? q). Recall that for any polynomial ¢(u) we have

| sstwstn = [ gwotaautu) ~o.

where dp(u) := q(u)du. Clearly, the measure p satisfies the condition of Lemma 3.7. Then the
polynomials are dense in L?(R?, ¢), therefore, g; = 0 and hence h = 0 in L*(R% p). m

Theorem 3.9 Suppose the linear system (3.1) starts with an initial distribution of (X9,..., X%
that is non-degenerate exchangeable Gaussian. Then the coercivity condition holds true at each
time t =0, as well as on [0,T], in the sense of Definition 3.6.

Proof. Let Y’ = X' — X!. Note that
Xt Xt —yl_yt
=y T A=y 4y

Thus, the coercivity conditions for the process (X") are equivalent to those for the process (Y).
By Lemma 3.1, (Y, ..., Y ) is exchangeable Gaussian. In particular, the vector (Y, Y%, Y%)
is exchangeable Gaussian. By Proposition 3.8, the integral operator @); associated with the kernel

1
Ki(u,v) := m(u, vype(u, v) (3.13)

13



is strictly positive on L?*(p;). Then it follows from the non-radial version of Proposition 2.4 that
the coercivity condition holds true for each time t.

The coercivity on [0, 7] follows from the non-radial version of Proposition 2.3 immediately
by using a similar argument to show the integral operator Q7 associated with the kernel

_ 1 T
Kr(1,0) = —ss,0) L po(at, v)dt (3.14)

is strictly positive on L?*(pr), since the proof of Proposition 3.8 still works if we replace @ by

QT7 K(U,U) by KT(U,U), P by I5T7 p(“a”) by %Sgpt(u7v)dt7 q<U,U) by %Sg Qt(u7v)dt7 etc. In
particular, (3.12) is replaced by

<QTh,h>:% f Ca(t)(det L(1)* D> >0 Criyroin (8 f gi(t,w)ul - - uindu)?dt = 0

0 G Kyt yeemin

where the positive coefficients Cy, det L, and Cy,, ... i, depend on ¢. It still implies g; = 0, and
then h=0. m

4 Nonlinear systems with three particles

We consider a class of nonlinear systems with N = 3 and with stationary distribution — in this
case, if the coercivity condition holds true on a time instance as in Definition 2.2, then it also
holds on any time interval (see Definition 2.1).

When N = 3, the stationary distribution of (X! — X%, X} — X%), as we show below, can
be computed analytically from a closed differential equation of these two variables. We then
prove the coercivity condition based on the analytical form of the stationary distribution. When
N > 3, there is no closed system for this process, and the computation of the distribution of
(X! — X4 Xt — X%) requires marginalization, which makes the analytical form intractable.

We introduce a “comparison to Gaussian kernels” technique, which makes extensive use of
positive definite kernels, to prove the coercivity condition, see Section 4.2. This technique allows
us to consider a large class of interaction potentials that lead to positive definite stationary
distributions. These potentials include ®(r) = r? and ®(r) = ®o(r) + cr?®, where 3 € [1/2,1]
and ®gy(r) is a smooth positive definite function.

4.1 Stationary distribution for pairwise differences

Global solutions exist for the gradient system (2.1) with potentials ®(r) = 7% or ®(r) = ®o(r) +
cr?8 if B e [1/2,1] and ®¢(r) is smooth, because these potentials lead to continuous drift terms.
When § < 1/2, these potentials lead to singular drifts, and we refer to [Sko96, AKR03| for further
study on the existence of weak and strong solutions.

We show first that the process of pairwise differences (X — X5, X| — X}%) admits a stationary
distribution, though the whole system of the particles does not.

Proposition 4.1 Suppose that ® € C*(R*,RT) and Z = §,, §zo e dudv < oo for
1
H(u,v) = 2[®(Ju]) + 2(Jv]) + &(|u - v])].
Then the process (riy, rls) = (X' — X4, X' — X% admits an invariant probability density
1
p(u,v) = Ee’QH(“’“). (4.1)
14



Proof. Note that

{ drly = F(rly,riy)dt + (dB} - dBY), (4.2)

driy = F(ris riy)dt + (dB} — dBy),
where the function F : R? x R — R? is given by

F(u,v) = =3 [26(ulu -+ o(Jul)o + o(fu — o) (u — v)]

where ¢(r) = ®'(r).
P B! —dBj, 2 1

The diffusion B! — B! . 92
directly that the distribution p(u, v) is a stationary solution to the backward Kolmogorov equation
of (4.2). Alternatively, for simpler computation, we show that the system (4.2) is a linear

transformation of a gradient system with homogeneous diffusion, which shares the same invariant

measure. Let A = /2 < ), which satisfies AAT = (2 1). Then the process

1 2
- (0
= A 1 12
(Y’; T3
is a weak solution to the system

~t
() (F s (1) »
Y, F(FY +%5Y,), YY) dB,

) has a non-degenerate covariance . One can then verify

1 0
1/2 /3/2

where (ﬁi, E;) is a standard Brownian motion on R??. Notice that H(u,v) = H(v,u) and

e F(v/2u, ‘/TQU + */761)) _ Vu[H(\2u, */TQu - ‘/761))]
F(*/Tiu + ‘/762), V2u) V,,[H(‘/Tiu + ‘/761), Vau)] )
Then, it follows from Lemma 5.10 that py (y,, y,)oce 2H®15¥1+5°%2) is an invariant density for
the system (4.3). Therefore, the process (r,, ;) admits p(u,v) as an invariant density. m

Remark 4.2 Similarly, one can prove that the process (X| — X4 X' — X4, ..., X} — X¥)
admits a stationary density on RWN=D4_ In essence, we decompose the system into a reference
particle and the relative positions of other particle to the reference particle. This is similar to the
macro-micro decomposition of the system in [Mal03, CGM0S8, HLL" 09, CDP* 18]. But the above
transformation leads to a gradient system with an additive white noise. This simplifies the proof of
the stationary distribution. Furthermore, the distribution of relative position (X' — X5 X —X?%)
1s the information necessary for the study of the weak solution of the system.

Remark 4.3 Our current proofs for coercivity condition makes use of the explicit form of the
joint distribution of (X — X5, X| — X4). When there are more than three particles, such an
explicit distribution is no longer available due to the need of marginalization, except the Gaussian
case. We expect to develop new techniques to make further use of the exchangeability to avoid
marginalization.
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4.2 Interaction potentials in form of ®(r) = 7%

We develop in this section a “comparison to Gaussian kernels” technique to prove that the coer-
civity condition holds true for systems with interaction potential ®(r) = 72 for 0 < 3 < 1 and
starting from an initial condition such that the pairwise difference has the stationary distribution.

This technique is based on that the stationary distribution of the stationary distribution
p(u,v) defined in (4.1) is positive definite, which we prove in the next lemma.

Lemma 4.4 Assume ®(r) = r?’.
1. If 0 < B < 1, then e=®(v="D js g positive definite kernel, so is p(u,v) defined in (4.1).
2. If B> 1, then p(u,v) defined in (4.1) is not positive definite.

Proof. This is a generalization of Corollary 3.3.3 of [BCR84] to the high-dimensional case. Note
that p(u,v) is positive definite if and only if e~®(#=vD is positive definite. The kernel |u —v|? for
u,v € R? is a negative definite kernel, because for any ci,...,c, € R, and D" ¢; = 0,

n n n n n n
2 2 2
Z CZ‘CJ"ZLZ'—U]'| Zci 20j|uj| + ZCj ZCj‘Uﬂ — 20,;10@-
ij=1 i=1 j=1 j=1 i=1 i=1
n
2 it
i=1

2
By Theorem 5.6, |u — v|?? is also a negative definite kernel for any 0 < 3 < 1. By Theorem 5.5,
we obtain that e~ “=**" is positive definite, then Part (1) follows.

Now we prove Part (2). Suppose now that for some 3 > 1, p(u,v) is a positive definite kernel.

2

<0.

Then for any t > 0, z1,...,2, € R? and ¢y, ..., ¢, € R, we have
1 1 2B
C —t]@;—xp 2P N —[t2P zj—t 20 ay,
Z cjcpe” = Z cjcie =0
k=1 k=1

By Theorem 5.5, the kernel |u—v|?? is negative definite, and by Theorem 5.7, |u—v|? is a metric
onR. Let 0= (0,...,0)e R 1=(1,...,1) e R¥ and 2 = (2,...,2) € R% Note that

7, |0—2/f =2°d7 >2/0 -1/

0-1/° =d
when 5 > 1. The contradiction to the triangle inequality implies Part (2). m
Recall that the coercivity condition depending only on the distribution of the process (ri,, ri5;).
When the process (r},, 7l,) is stationary, the coercivity condition at a time instance in Definition
2.2 is equivalent to that of Definition 2.1).
Following proposition 2.3, the coercivity condition is equivalent to the positiveness of the
integral operator associated with K (r,s) : R™ x R* — R defined by
1
Kiros) = oo™ [ | cComptrtsmydean (1.4
p(r)p(s) §d-1 Jgd—1

where p(u,v) is the stationary density defined in (4.1), and p denotes the density of |ri,|. For the
case § = 1 in the previous section, we witnessed that the Gaussian distribution neatly ensures
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strict positiveness of the integral operator through Taylor expansion of (u,v)e““*. However,
when [ # 1, such a “quadratic structure” is no longer available. We introduce a new technique,
which bounds the kernel by another positive definite kernel from below and combines the Gamma
integral representation of the power function, to uncover such a quadratic structure.

Lemma 4.5 Let ®; : RY x R? — R be positive definite kernels for i = 1,2. Then

J J h(u)h(v)® (u, v)e®2) dudy > f J v) P4 (u, v)dudv,

Rd JRd R JRd

J J h(u) (u, v)e2) dudy > f J v)P1 (u, v)Po(u, v)dudv,
Re JR4 R4 JRd

as long as the integrals exist.

Proof. By Theorem 5.2, ®5(u, v)"®(u,v) is positive definite for each integer n > 0. Then the
inequalities follow from the Taylor expansion of e®2(?), m

Proposition 4.6 Let 5 € (0,1] and p(u,v) be a probability density function defined in (4.1) with
O(r) =1r%, ie. plu,v) = %e%(‘“‘m*'”'m*'“*”'w). Let p(r) be the probability density function of
\U| with (U, V') having a joint distribution p(u,v). Then,

= ul)h(|v (u, v) u, v)dudv
=] | Cubniie) S, v)dua > 0

for any 0 # h e L*(p).
Proof. The factor % and the normalizing constant Z does not play a role in the above inequality,
so we neglect them in the following proof. We only consider the case 8 < 1, since when 5 = 1 the

Gaussian distribution neatly ensures strict positiveness of the integral operator through Taylor
expansion of (u,v)e™’. Note that

I :J f h(|u\)ef2wu|zﬂh(yv\)efz|v|2a<u ) oo g
3 ol

J J (lu)h |v|< V) e®2(00) dydy,
Re Jrd jul[v]

where h(r) := h(r)e 2" and

Dy (u,v) = [u|?® + |v]*? —Ju —v|?.

By Lemma 4.4, |u —v|?? is negative definite. Then, by Theorem 5.4, ®5(u, v) is positive definite.
Thus, by Lemma 4.5 with ®;(u,v) = (u,v) and ®9(u,v) as above, we have

f f (|u)h < V) (Ju[* + [v]* — Ju — v**) dudv
R Ja Jul[v]

_ —Ld fRd R(ju)h(|v D<\UH T!u—vlzﬁdudv— I (4.5)
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where in the equality we dropped the term |u|? + |v]® because, due to symmetry of {(u,v),

[ ] attubantonSts —o

for any g1, g» € L?(p). We shall use this property several times in the following.

Next, we use Gamma function to bound I in (4.5) from below by a Gaussian kernel as in the
previous section. Note that for any > 0 and § < 1,

0
lu— v[? = LJ (1— e—Alu—vIQ)ﬂ

r1-5) J A8+
Plugging this into the integral in (4.5), and using the symmetry of (u,v) again, we obtain
~ B POOJ C <U, 'U> N d)\
I = ——— h(lu = _ 1) dudv
T o e Jua "R Jdudvsg
B Poof [~ o~ Lu,v) S Mu—ol? d\
= 7 h(|u)h lu=v* qudv
=) Jy Juo Jua "D g i
B r‘oof [ o~ Mul+ v <U v) 22(u,v) dA
= 1 ul)h(jv PP 3 2 o220 gy dyy :
T Jy Juo S0P ulle] e

By the symmetry of (u,v) and Taylor expansion of e?*“*’ we have

N 9 2n+1
I = J J f U v =A(|ul?+]v|?) <U U> < > dUd'U22n+1)\2n 6d}\
Nl 5 e oo MDD lle] 2 (20

)
Z 1 —~ J f f —A (r?+s )(TS)d+2n+10ndeS/\2n_’Bd/\,

where we denote C,, := Sﬁesd*1 SneSd . %dfdn, which is positive. Thus,

]~ _ i F(lnﬂﬁ) J'OO /\271-,3 lLOO ?L(T)e_/\r27”d+2n+1d7“] d\

0

; © 2
> Z f )\Qn ﬁd)\ |:J h(T)e_’\r27’d+2”+1dr] ]

0

Note that C’n,ﬁ = % Sf A2=Bd)\ > 0 for each n > 0. Combing all the above, we have

00 B 0 ) ) 2
I > Z Cn,,B [J h(r)e—Qr B_op ’I"d+2n+1d7‘:| :
n=0 0

which is positive if h ;é 0 e L2(f) with f(r) := rd+1e=2"=2" pecause by Lemma 5.9, the set
of functions span{1,7?,74 ---} is complete in L*(R*, f). Note that supp f = suppp = RT, so
h # 0¢e L?(f) when h 7& 0 € LZ( ). We conclude the proof. m

The coercivity condition follows directly from the above proposition.

Theorem 4.7 Let ®(r) = r?? for B € [1/2,1]. Then the coercivity condition holds true for the
system (2.1) with N = 3 starting from an initial distribution such that the joint distribution of
(9, 795) is p(u,v) in (4.1).
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Proof. Since 8 € [1/2,1] and the initial distribution of (r%, %) is p(u,v), it follows from
Proposition 4.1 that the process (r},,r!;) is stationary with distribution p(u,v). Then, the
coercivity condition is equivalent to that

(g, Tis)
] = E[h(|’l"t12|)h(|'f‘tl3|> ’ 1512H,r13|] > O
1211713
for any h # 0 € L?*(p), where p is the stationary probability density of |rt,|. Note that
= _J J |u| |U| <u /U> 2(\u\w+|v|25+|u—v|25)dudv‘
R Tullol©

Then we can conclude the theorem by Proposition 4.6. =

Remark 4.8 We point out that requirement 5 € (0,1] is to ensure that the stationary density
p(u,v) is a positive definite kernel. When > 1, the above method does no longer work, because
p(u,v) is not positive definite as shown in Lemma 4.4. The requirement B 5 is to ensure that
the drift term is continuous, so that a strong solution exists. When g < 3, drift is moderately
singular, the existence of a solution is open [Sko96, AKRO03|, but the coercnnty inequality still
holds true.

4.3 General interaction potentials

The “comparison to a Gaussian kernel” technique in Lemma 4.5 and Proposition 4.6 can be
generalized to prove the coercivity condition for a large class of interaction functions. The
following lemma provides the key element in such a generalization.

Assumption 4.9 Assume that ® : R™ — R can be decomposed as
O(r) = @o(r) + ar®’,

where ®y € CY(RT,RT) is a function such that ®o(|u — v|) is a negative definite kernel, a > 0
and € [1/2,1]. Assume further that

Z —J J b+ oD+ (u=vD] gy gy < oo,
Rd JR4

Lemma 4.10 Let & : R* — R be a function satisfying Assumption 4.9, and let p(r) be the
density of |U| with (U, V') having a joint distribution p(u,v) = 2~ 5le (1) +2((o1+ @) . Then,

I = f f |U| | | <u U> D(|ul)+P(Jv))+2(Jlu—v]|)] dudv > 0
Rd Talfol©

for any 0 # h € L*(p).

Proof. Rewrite the integral as

I () 20(ol)7 S V)~ Zafu—o]?— 20 (ju—v]) g, g
|, | e ymgupe- iyt ud

ulo] ©

f f |u| |’U| <U U> —7a\u v\zﬁ-‘r ¢(|u v|) dudv
Rt Jrd fulJof
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where (1) = h(r)e=3®=5%() and
b (u, v) := o(lul) + Bo(|v]) — Po(|u — v]).

Since ®o(|u—wv|) is negative definite, by Theorem 5.3, d(u, v) is positive definite. Also, by Lemma
4.4, (u, v>e‘§“‘“_”‘w is positive definite. Hence, by Lemma 4.5, we have

f J (jul)(lo]) o2 el gy,
R ulel

Then the strict positive definiteness follows from Proposition 4.6. =
Remark 4.11 The above lemma can be directly generalized to non-radial kernels of the form
®(u,v) = Og(u,v) + clu — v|**
with ®o(u,v) being negative definite, ¢ > 0, and with 5 € (0,1].
The coercivity condition follows directly from the above proposition.

Theorem 4.12 The coercivity condition holds true for the system (2.1) with N = 3 starting
from an initial distribution such that the joint distribution of (r9y,7%5) is p(u,v) in (4.1), and
with ® : RT — R satisfying Assumption 4.9.

Proof. Since § € [1/2,1] and @ is smooth, the and the initial condition has distribution p(u, v),
the solution of the system leads to a stationary process (riy, ;). Then, the coercivity condition
holds by Lemma 4.10. m

We provide a few examples of negative definite radial kernels, and related positive kernels.

Lemma 4.13 For0 <a <2,0<~v<1 anda =0, the following kernels are negative definite:

D1 (ju—vf) = (a + Ju—v[*)7;
Do (Ju — v|) =log[1 + (a + |u —v|*)7].

For any ¢ > 0 and any integer k > 1, the following kernels are positive definite:
e—c¢’1(|u—v|)7 6—0@2(|u—v|)’ @2(‘u . U‘)_k

Proof. By Lemma 4.4, if 0 < o < 2, then |u — v|® is a negative definite kernel. By definition of
a negative definite kernel a + |u — v|* is also negative definite for any a € R. By Theorem 5.6,
@1 (Ju —v|) = (a + |u—v|*)7 is also a negative definite kernel when 0 < 7 1 and a = 0.

Since ®;(|u — u|) = a” = 0, by Theorem 5.6, log(1 + ®1(ju — v|)) = Po(|u — v|) is negative
definite.

The positive definiteness of e=¢®1(u=vD and e~c®2(v=vD follows directly from Theorem 5.5.
The kernel ®,(|u — v|)~* is positive definite because

P sa(juv) 1
e s ds =
Jo Py (Ju —vl)

and because that the product of positive definite kernels are positive definite. m
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Proposition 4.14 Assume that the series

Oi(r) = co+ Z cjlog [l + (aj +r*)"] — Z c;[log(1 + (aj + r®i) )] " (4.6)
Dy(r) = Z (@] + )] — Z [l + (af + r)7] =7 (4.7)

converge for every r € RT, where the coefficients satisfy the following conditions
1. a; 20,a;>20,¢;, > 0,¢;, >0 fori,j #0 and
2. 0<vy <1, aj,a;,€[1,2] fori,j #0, and
3. B; >0 and k; > 1 is a positive integer for each j.
Let K : RT x RT — R be an integral kernel defined in (4.4) with p(u,v) defined in (4.1) and with
O(r) = Dy(r) + Do(r). (4.8)
Then K(r,s) is a positive definite kernel. Furthermore, if there exists ig = 1, such that
a;, =0, v, = 1, and ¢;, > 0, (4.9)
then the coercivity condition holds true for the system (2.1) with potential ® in (4.8), if it starts

from an initial distribution such that the joint distribution of (1%, 7%) is p(u,v) in (4.1).

Proof. It follows directly from Lemma 4.13 that K is positive definite. Note that with the above
conditions, the drift term is smooth and dominated by a term r?? with 8 = «af /2 € [1/2, 1], so the
system leads to a stationary process (riy,ri;). It follows from Lemma 4.10 that the coercivity
condition holds true. m

5 Appendix

5.1 Positive definite integral kernels

In this section, we review the definitions of positive and negative definite kernels, as well as their
basic properties. The following definition is a real version of the definition in [BCR84, p.67].
Definition 5.1 Let X be a nonempty set. A function ¢ : X x X — R is called a (real) positive
definite kernel if and only if it is symmetric (i.e. ¢(z,y) = ¢(y,x)) and

n

Z cicrp(zs, ) = 0 (5.1)

J,k=1

for alln e N, {xq,...,2,} € X and {c1,...,¢,} € R. We call the function ¢ a (real) negative
definite kernel if and only if it is symmetric and

n

Z cicr(z;, ) <0 (5.2)

J.k=1

foralln =2, {zy,...,2,} € X and {cy,...,c,} € R with 377, ¢; = 0.
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Remark. In the definition of positive definiteness in [BCR84, p.67|, a function ¢ : X x X — C
is positive definite if and only if

> (g, ) = 0 (5.3)
k=1
forall n e N, {z,...,2,} € X and {cy,...,¢,} € C, where ¢ denotes the complex conjugate of

a complex number c. It is straightforward to check that when ¢ is real-valued and symmetric,
the definitions (5.1) and (5.3) are equivalent. Similarly, In the definition of negative definiteness
in [BCR84, p.67|, a function ¢ : X x X — C is negative definite if and only if it is Hermitian

(le ¢(I7y) = ¢(y7m)) and

Z CjEk(ﬁ((I}j, .Tk) <0 (54)

J,k=1

for all n = 2, {z1,...,2,} € X and {cy,...,¢,} € C with Z?:I c; = 0. We can again check
that when ¢ is real-valued, the definitions (5.2) and (5.4) are equivalent. In this paper, we only
consider real-valued, symmetric kernels.

Theorem 5.2 (Properties of positive definite kernels) Suppose that k, ki, ko : X x X <
R? x R? — R are positive definite kernels. Then

c1k1 + coks s positive definite, for ci,co =0

kiky is positive definite. ( [BCR84, p.69])

exp(k) is positive definite. ( [BCRS4, p.70])

k(f(u), f(v)) is positive definite for any map f : R — RY

Inner product (u,v) = ijl u;v; is positive definite ( [BCR84, p.75])

f(u)f(v) is positive definite for any function f: X — R ( [BCR8/, p.69]).

If k(u,v) is measurable and integrable, then {§ k(u,v)dudv =0 ( [RKSF13, p.524])

S N

Theorem 5.3 [BCR84, Theorem 3.1.17] Let ¢ : X x X — R be symmetric. Then ¢ is positive
definite if and only if

det(d)(:z:j? xk)j,k$n) >0

for all n e N and all {z1,...,z,} € X.

Theorem 5.4 [BCR84, Lemma 3.2.1] Let X be a nonempty set, o € X and let ¢ : X x X — R
be a symmetric kernel. Put ¢(x,y) := ¥ (x, xo) + ¥ (y, x0) — 1 (x,y) —(xo, xo). Then ¢ is positive
definite if and only if ) is negative definite.

Theorem 5.5 Let X be a nonempty set and let v : X x X — R be a kernel. Then ) is negative
definite if and only if exp(—tv) is positive definite for all t > 0.

Proof. The complex version of this theorem is proved in Theorem 3.2.2 of of [BCR84|. The real
version can be proved in a similar way. =
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Theorem 5.6 If ¢ : X x X — R is negative definite and ¢ (xz,x) = 0, then so are ¥* for
0<a<1andlog(l+1).

Proof. The complex version of this theorem is proved in Theorem 3.2.10 of [BCR84|. The real
version can be proved in a similar way. m

Theorem 5.7 |[BCR84, Proposition 3.3.2] Let X be nonempty and ¢ : X x X — C be negative
definite. Assume {(x,y) € X x X, ¢(z,y) = 0} = {(z,2) : x € X}, then /¢ is a metric on X.

5.2 Miintz-type theorems on half-line

We recall first the following theorem on the completeness of {t"} in weighted L? space on
unbounded domain (see [Fuc46,BP46] and see [GD05, Hor14| for recent developments ).

Theorem 5.8 Let ay be positive numbers, such that ajy1 —ap, = d > 0,(k=1,2,...), and let

2 if

2 ifr <a.
ai

Then {e~'t%} is complete in L?(0,0) if and only if

foo Mdr =

Lemma 5.9 The set of functions {r** k = 1,2,---} is complete in L*([0,0), p) for any proba-
bility density p such that sup,—q p(r)e*” < .

Proof. Let a; = 2k for k = 1,2,---. We define the function log(¢(r)) = 23, _, o oo AL > a,
and log(y(r)) = % if r < a;. Note that 2] = ,l:/zlj £ > In(|r/2]). Then ¢ (r) = r and

a<r aj

()

We conclude that {e7%?* k =1,2,---} is complete in L*(0, ) by Theorem 5.8.
To show that {r?*,k = 1,2,---} is complete in L*(p), assume that (h(r), 7)1,y = 0 for all
k = 1. Then

JOO h(r)p(r)e r®* e "dr = JOO h(r)r®*p(r)dr = 0

0 0
for all k. This implies that h(r)p(r)e” = 0 in L?[0,00) (note that h(r)p(r)e” € L*[0,0) because
sup,~, p(r)e* < o). Hence h(r)p(r) = 0 almost everywhere, and h = 0 in L*([0,0),p). =

5.3 Stationary measure for a gradient system

Lemma 5.10 Suppose H : R® — R is locally Lipschitz and that Z = §,, e 2@ dz < co. Then
2H (z)

p(z) = %6_ 15 an invariant density to gradient system

dXt == —VH(Xt)dt + dBt,

where (By) is an n-dimensional standard Brownian motion.
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Proof. It follows directly by showing that p(z) is a stationary solution to the backward Kol-
mogorov equation, i.e.

1
5Ap+ V- ()VH) = 0.
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