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Abstract. We study the vertex classification problem on a graph whose vertices are in

k (k ≥ 2) different communities, edges are only allowed between distinct communities,

and the number of vertices in different communities are not necessarily equal. The ob-

servation is a weighted adjacency matrix, perturbed by a scalar multiple of the Gaussian

Orthogonal Ensemble (GOE), or Gaussian Unitary Ensemble (GUE) matrix. For the

exact recovery of the maximum likelihood estimation (MLE) with various weighted adja-

cency matrices, we prove sharp thresholds of the intensity σ of the Gaussian perturbation.

These weighted adjacency matrices may be considered as natural models for the electric

network. Surprisingly, these thresholds of σ do not depend on whether the sample space

for MLE is restricted to such classifications that the number of vertices in each group is

equal to the true value. In contrast to the Z2-synchronization, a new complex version of

the semi-definite programming (SDP) is designed to efficiently implement the community

detection problem when the number of communities k is greater than 2, and a common

region (independent of k) for σ such that SDP exactly recovers the true classification is

obtained.

1. Introduction

Most graphs of interest display community structure, i.e., their vertices are organized

into groups, called communities, clusters or modules. In some cases, edges are concen-

trated within groups. For example, vertices of a graph may represent scientists, edges

join coauthors. Each group consists of vertices representing scientists working on the

same research topic, where collaborations are more frequent. Likewise, communities could

represent molecules with similar structure in molecule interaction networks among which

interactions are more likely, groups of friends in social networks who communicate more

often, websites on similar topics in the web graph where there are more hyperlinks in

between, and so on. In some other cases, edges may only be possible between vertices

in distinct groups. For instance, in an electrical network, electrical current can only be

observed between two sites with different electrical potential; commercial trades can only

occur when two individuals own different goods. Identifying communities may offer insight

on how the network is organized. It allows us to focus on regions having some degree

of similarity within the graph. It helps to classify the vertices, based on their role with

respect to the communities they belong to. For instance we can distinguish vertices in the

interior of their clusters from vertices at the boundary of the clusters, which may act as

brokers between the modules and, in that case, could play a crucial role both in holding

the modules together and in the dynamics of spreading processes across the network.
1
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Identifying different communities in the stochastic block model is a central topic in many

fields of science and technology; see [1] for a summary. A lot of spectacular work has been

done when the graph has two equal-sized communities, see, for example, [7, 8, 2] for an

incomplete list. Community detection with two equal-sized communities has also been

studied on hyper-graphs, see [6].

In this paper, we instead study the community detection on a graph in which there are

k(k ≥ 2) distinct clusters, not necessarily equal-sized, and edges are only allowed between

vertices in different communities. This corresponds to the famous k-partite graph in graph

theory. The observation is a weighted adjacency matrix, perturbed by a σ-multiple of the

Gaussian Orthogonal Ensemble (GOE), or the Gaussian Unitary Ensemble (GUE) matrix.

Here σ is a positive number representing the intensity of the Gaussian perturbation. These

weighted adjacency matrices, as will be explained later, may be considered as natural

models for the electric network. Given such observations, we apply the maximum likelihood

estimation (MLE) to determine which vertex belongs to which group, or community. We

obtain a division, or an assignment of vertices of the graph into communities by the MLE, if

this assignment of vertices is the same as the true assignment of vertices into communities

for every vertex, we say that the MLE exactly recovers the true community structure of

the graph, or the exact recovery occurs for the MLE.

The main goal of the paper is to investigate the condition when the MLE exactly recovers

the true community structure of the graph. We prove sharp phase transition results with

respect to the intensity σ of the Gaussian perturbation for the exact recovery of the MLE.

More precisely, we explicitly find the critical value for σ, such that if σ is less than the

critical value, then as the size of the graph goes to infinity, with probability tending to 1

exact recovery occurs. On the other hand, if σ is greater than the critical value, then as

the size of the graph goes to infinity, with probability tending to 0 exact recovery occurs.

Interestingly, the threshold, or critical value, of σ does not depend on whether or not we

restrict the sample space for MLE to those classifications in which the number of vertices

of each group, or community, is the same as the true value. These results are obtained by

analyzing the Gaussian distribution through various inequalities.

Semidefinite programming (SDP) is one of the most exciting developments in math-

ematical programming in the 1990’s. SDP has applications in diverse fields including,

but not restricted to, traditional convex constrained optimization, control theory, and

combinatorial optimization. A linear programming (LP) problem is one in which we wish to

maximize or minimize a linear objective function of real variables over a polytope. In SDP,

we instead use real-valued vectors and are allowed to take the dot product of vectors; non-

negativity constraints on real variables in LP are replaced by semi-definiteness constraints

on matrix variables in SDP. Because SDP is solvable via interior point methods, most of

these applications can usually be solved very efficiently in practice as well as in theory.

It is well-known that the community detection problem with k = 2 equal-sized commu-

nities may be efficiently solved by a semi-definite programming algorithm; see, for instance,

[4, 5]. When there are k ≥ 3 different communities, we can design a “complex version”

of the semi-definite programming for efficient recovery. The idea is to relax the constraint
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on the rank of the optimal solution, solve the optimization problem on a larger space of

the semi-definite matrices, and then achieve efficient recovery. We also obtain an interval

of σ to guarantee the exact recovery of the SDP, by applying the celebrated result of the

Tracy-Widom fluctuation of the maximal eigenvalue of the GOE matrix; see [9].

2. Main Results.

In this section, we state the main results proved in the paper. We first discuss the basic

definition and notation of the k-partite graph, where k is a positive integer with value at

least 2.

A k-partite graph G = (V,E) is a graph whose vertices can be colored in k different

colors such that any two vertices of the same color cannot be adjacent, or joined by an

edge. Assume V = [n] := {1, 2, . . . , n} is the vertex set of G. Define the set of colors

Rk := {c1, . . . , ck} ⊂ R

to be a set consisting of k distinct real numbers representing k different colors.

Let x : [n] → Rk be a mapping from the set of vertices to the set of colors, i.e., it

assigns a unique color in Rk to each vertex in [n]. Such a mapping x is also called a color

assignment mapping of a graph. For 1 ≤ i ≤ k, let

x−1(ci) = {j ∈ [n] : y(j) = ci};

that is, y−1(ci) is the set consisting of all the vertices with color ci under the mapping y.

For each color ci ∈ Rk (1 ≤ i ≤ k), let

ni(x) :=
∣∣x−1(ci)

∣∣
In other words, ni(x) is the total number of vertices in [n] with color ci under the mapping

x. It is straightforward to see that ni(x)’s are positive integers satisfying

k∑
i=1

ni(x) = n.(2.1)

Given these definitions, to determine the colors of all the vertices of a graph is the same

as to identify the color assignment mapping of the the graph. In vertex-color-detection

problems that will be discussed later, we shall find color assignment mappings of graphs

from the following spaces of color assignment mappings:

(1) For each positive integer n, let n1 ≥ n2 ≥ . . . ≥ nk be fixed and satisfy (2.1). Let

Ωn1,...,nk be the set of all the color assignment mappings under which the number

of vertices with color ci is exactly ni for each 1 ≤ i ≤ k; that is,

Ωn1,...,nk = {x : [n]→ Rk| |x−1(ci)| = ni, ∀ 1 ≤ i ≤ k}.

(2) Let Ω be the set of all the color assignment mappings; that is,

Ω = {x : [n]→ Rk}.
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(3) Let c > 0. Let Ωc be the set of all the color assignment mappings in Ω such that

the number of vertices in each color is at least cn, i.e.

Ωn1,...,nk = {x : [n]→ Rk| : min
j∈[k]

∣∣x−1(cj)
∣∣ ≥ cn}.

2.1. Real Weighted Adjacency Matrix with Gaussian Perturbation. We first con-

sider the community detection problem when the observation is a real weighted adjacency

matrix with Gaussian perturbation.

In Theorems 2.1 and 2.2, we observe different weighted adjacency matrices for a k-

partite graph, both of which are perturbed by a σ-multiple of a matrix with i.i.d. standard

Gaussian entries. The weighted adjacency matrix in 2.1 can be considered as a natural

model for an electrical network, where each one of the n vertices has one of the k distinct

electric potentials. The weight of each (oriented) edge is the difference of electric potentials

between its initial point and its terminal point. This difference in potentials is proportional

to the intensity of electric current on the edge. Given the observation, the goal is to find

the difference of electric potentials between each pair of vertices; then we can determine the

electrical potential of each vertex up to an additive constant. We consider the probability

of the exact recovery of MLE, and find a sharp threshold with respect to the intensity σ

of the Gaussian perturbation. More precisely, there is a critical value σc depending on n,

such that if limn→∞
|σ|
σc
< 1, the limit of the probabilities for the exact recoveries of MLE

as n→∞ is 1; while if limn→∞
|σ|
σc
> 1, the limit of the probabilities for the exact recovery

of MLE as n→∞ is 0.

Before stating Theorem 2.1, recall that the Frobenius norm of an m×m complex matrix

A = {Ai,j}mi,j=1 ∈ Cm×m is defined by

‖A‖F :=

√√√√ m∑
i,j=1

|Aij |2

Theorem 2.1. Let n1 ≥ . . . ≥ nk be the numbers of vertices in k different colors c1, . . . , ck,

respectively. For an arbitrary mapping x ∈ Ω, let G(x) be the n × n square matrix whose

entries are defined by

Gi,j(x) = x(i)− x(j);(2.2)

where 1 ≤ i, j ≤ n. Let y ∈ Ωn1,...,nk be the true color assignment function. Assume the

observation is given by

T = G(y) + σW(2.3)

where W is a random n × n matrix with i.i.d. standard Gaussian entries, and σ ∈ R
is deterministic. Let k and {c1, . . . , ck} be fixed as n → ∞. Assume that there exists a

constant c > 0 independent of n, such that nk
n ≥ c for all n, Let

ŷ = argminx∈Ωn1,...,nk
‖T−G(x)‖2F ;(2.4)

y̌ = argminx∈Ω‖T−G(x)‖2F .(2.5)

We have
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(1) Assume there exists a constant δ > 0 independent of n, such that

σ2 <
(1− δ)nmin1≤i<j≤k(ci − cj)2

4 log n
.(2.6)

Then

lim
n→∞

Pr(ŷ = y) = 1; and lim
n→∞

Pr(y̌ = y) = 1.

(2) Assume there exists a constant δ > 0 independent of n, such that

σ2 >
(1 + δ)nmin1≤i<j≤k(ci − cj)2

4 log n
.(2.7)

Then

lim
n→∞

Pr(ŷ = y) = 0; and lim
n→∞

Pr(y̌ = y) = 0.

Note that ŷ (resp. y̌) are actually the maximum likelihood estimation (MLE) of the true

value y in the sample space Ωn1,...,nk (resp. Ω) with respect to the given observation T,

since for each given color assignment mapping x ∈ Ω, the probability density at each T is

proportional to e−
‖T−G(x)‖2F

2 .

More general versions of Theorem 2.1 are proved in Sections 3 and 4; see Propositions

3.5, 3.7, 4.3, 4.4. In these propositions, we also allow the total number of colors k to change

with n. It is straight forward to check that when k and Rk are fixed as n→∞, Theorem

2.1 is a special case of these propositions.

In Theorem 2.2, we observe the uniformly-weighted adjacency matrix for the undirected

k-partite graph, perturbed by a noise which is a σ-multiple of a matrix with i.i.d. standard

Gaussian entries. Given the observation, the goal is to determine whether two vertices

have the same color or not. For x, y ∈ Ω, we say x and y are equivalent if for all i, j ∈ [n],

x(i) = x(j) if and only fi y(i) = y(j). We write x ∈ C(y) if x and y are equivalent. Now

we only need the algorithm to find a color assignment mapping which is equivalent to the

true color assignment mapping. Again we find a sharp threshold for the probability of the

exact recovery of the MLE with respect to the parameter σ.

Theorem 2.2. Let n1 ≥ . . . ≥ nk be the numbers of vertices in the k different colors,

respectively. For an arbitrary mapping x ∈ Ω, let K(x) be the n × n square matrix with

entries defined by

Ki,j(x) =

{
1 if x(i) 6= x(j)

0 if x(i) = x(j)
;(2.8)

where 1 ≤ i, j ≤ n. Let y ∈ Ωn1,...,nk be the true color assignment function. Assume the

observation is given by

R = K(y) + σW(2.9)

where W is a random n×n matrix with i.i.d. standard Gaussian entries as before. Let the

total number of colors k and the set of all colors {c1, . . . , ck} be fixed as n → ∞. Assume
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there exists a constant c > 0, such that nk ≥ cn for all n. Let

ỹ = argminx∈Ω 2c
3

‖R−K(x)‖2F(2.10)

y = argminx∈Ωn1,...,nk
‖R−K(x)‖2F .(2.11)

We have

(1) Assume there exists δ > 0, such that

σ2 <
(1− δ)(nk + nk−1)

4 log n
(2.12)

Then

lim
n→∞

Pr(ỹ ∈ C(y)) = 1; and lim
n→∞

Pr(y ∈ C(y)) = 1.

(2) Assume there exists δ > 0, such that

σ2 >
(1 + δ)(nk + nk−1)

4 log n
(2.13)

then

lim
n→∞

Pr(ỹ ∈ C(y)) = 0; and lim
n→∞

Pr(y ∈ C(y)) = 0.

More general versions of Theorem 2.2 are proved in Sections 5 and 6; see Propositions

5.7, 5.8, 6.7, 6.8. In these propositions, we also allow the total number of colors k to change

with n. It is straight forward to check that when k and Rk are fixed as n→∞, Theorem

2.2 is a special case of these propositions. The proofs of Theorems 2.1 and 2.2 are based

on various inequalities of Gaussian distributions.

From these two theorems, we can see that we may either choose the sample space for

MLE as all the possible assignments of k colors, or potentials, to n vertices in Theorem 2.1

(all the possible classifications of n vertices in k distinct groups in Theorem 2.2), or choose

the sample space for MLE to be restricted on all the classifications such that the number

of vertices of each type coincides with that of the true value - either way we obtain the

same threshold.

2.2. Complex Unitary Matrix with Gaussian Perturbation. Now we consider the

community detection problem with k ≥ 2 different communities when the observation is a

complex unitary matrix with Gaussian perturbation. Community detection problems with

such an observation matrix may be efficiently recovered by the SDP.

Let d1, . . . , dk ∈ [0, 2π) be k distinct real numbers. Let i satisfy i2 = −1 be the imaginary

unit. Let x : [n]→ {eid1 , . . . , eidk} be a mapping which assigns each vertex in [n] a unique

color represented by a complex number of modulus 1. Let Θ be the set consisting of all

such mappings, that is

Θ := {x : [n]→ {eid1 , . . . , eidk}}

For a mapping x ∈ Θ, let P(x) be an n× n matrix whose entries are given by

Pa,b(x) = x(a)x(b) = eLog[x(a)]−Log[x(b)], 1 ≤ a, b ≤ n,
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where x(b) is the complex conjugate of x(b) and Log[·] is the principal branch of the complex

logarithmic function.

For each x ∈ Θ, if we consider x as an n× 1 vector given by

x = (x(1), . . . , x(n))t,

then

P(x) = xxt;

which is a rank-1 positive semi-definite Hermitian matrix whose diagonal entries are 1.

We may further restrict the MLE to a subspace of Θ satisfying the following assumptions.

Assumption 2.3. (1) The number of vertices in each color is the same. In particular,

this implies that the total number of vertices n, is an integer multiple of the total

number of colors k.

(2) eid1 , . . . , eidk are the kth roots of unity. Without loss of generality, assume that

dl = 2(l−1)π
k , for l = 1, . . . , k.

Let ΘA be the subset of Θ consisting of all the mappings satisfying the above two as-

sumptions. That is,

ΘA :=
{
x ∈ Θ :

∣∣∣x−1
(
eidj
)∣∣∣ =

n

k
, ∀1 ≤ j ≤ k

}
.

We define an equivalence class on ΘA as follows. We say x, y ∈ ΘA are equivalent if there

exists a fixed angle α, such that eiαx = y. For each z ∈ ΘA, let θ(z) be the equivalence

class containing y.

Let y ∈ ΘA be the true color assignment function. Define the observation by

U = P(y) + σWc

where Wc is the standard GUE random matrix. More precisely, Wc is a random Her-

mitian matrix whose diagonal entries are i.i.d. standard real Gaussian random variables

(N (0, 1)R), and upper triangular entries are i.i.d. standard complex Gaussian random vari-

ables (N (0, 1)C).

Given each observation U, the goal is to determine the true color assignment function

y, up to a multiplicative constant. Let

yA = argminx∈ΘA‖U−P(x)‖2F(2.14)

Note that for any x ∈ Θ,

‖P(x)‖2F =
∑

1≤a,b≤n
x(a)x(b)x(b)x(a) = n2,

which is independent of x. Hence we have

yA = argmaxx∈ΘA<〈U,P(x)〉



8 ZHONGYANG LI

where < denotes the real part of a complex number, and 〈·, ·〉 denotes the inner product of

two matrices defined by

〈M1,M2〉 =
∑
i,j∈[n]

M1(i, j)M2(i, j).(2.15)

where M1,M2 ∈ Cn×n.

It is not hard to see that for any x, z ∈ ΘA, if x ∈ θ(z), then P(x) = P(z). So given any

observation U, we cannot distinguish color assignment mappings in the same equivalence

class of θA. Therefore the best we can do by an MLE algorithm is to recover the equivalence

class of the true color assignment function. We have the following theorem.

Theorem 2.4. Let y ∈ ΘA be the true color assignment function satisfying As-

sumption 2.3. Let k be fixed and n→∞.

(a) If there exists δ > 0, such that

σ2 <
(1− δ)

[
n(1− cos 2π

k )
]

2 log n
(2.16)

then

lim
n→∞

Pr(yA ∈ θ(y)) = 1

(b) If there exists δ > 0, such that

σ2 >
(1 + δ)

[
n(1− cos 2π

k )
]

2 log n

then

lim
n→∞

Pr(yA ∈ θ(y)) = 0.

Now we describe a complex semi-definite programming for community detection with

multiple (more than 2) communities. For a true color assignment function y ∈ Θ, let the

observation be given by

V = P(y) + σdiag(y)Wsdiag(y)

where Ws is the standard GOE random matrix. More precisely, Ws is a random symmetric

matrix whose diagonal entries and upper triangular entries are i.i.d. standard real Gaussian

random variables (N (0, 1)R). Note that V is a Hermitian matrix.

Given each observation V, the goal is to find the true color assignment function y, up

to a multiplicative constant. We may consider the following optimization problem

max<〈V, X〉(2.17)

subject to Xii = 1

and X � 0

where X � 0 means that X is a positive semi-definite Hermitian matrix.
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For any mapping x ∈ Θ, the matrix P (x) := xxt is a rank-1 Hermitian matrix. The

idea for the MLE is to find the minimizer

argminP (x)‖P (x)−V‖2

among all the rank-1 positive semi-definite Hermitian matrices with diagonal entries 1 and

the form xxt. To achieve efficient recovery, we may relax the rank-1 constraint and consider

instead an optimization over all the positive semi-definite Hermitian matrix with diagonal

entries 1.

Then we have the following theorem

Theorem 2.5. Let p(Y ;σ) be the probability that the solution Y of (2.17) coincides with

yyt, where y is the true color assignment mapping for vertices. If there exists a constant

δ > 0 independent of N , such that σ < (1−δ)
√
n√

2 logn
, then

lim
n→∞

p(Y ;σ) = 1

In Theorem 2.5, it turns out that the bound (1−δ)
√
n√

2 logn
on σ to guarantee the exact recovery

of the SDP is independent of k - the total number of communities. However, if we instead

use the GUE matrix Wc instead of diag(y)Wsdiag(y) to represent the noise, Theorem 2.4

shows that threshold of σ to guarantee the exact recovery of MLE does depend on k. This

threshold is of order O
(

1√
n logn

)
when k ∼ n. Since the SDP is an algorithm obtained

from the relaxation of the rank constraint of the MLE, one may naturally expect a smaller

common upper bound for σ to guarantee the exact recovery of the SDP for all k, when the

noise is represented by a σ-multiple of Wc.

Theorem 2.4 is proved in Section 7.1; and Theorem 2.5 is proved in Section 7.2.

3. Proof of Theorem 2.1 when the number of vertices in each color is fixed

in the sample space

We first consider the MLE in Theorem 2.1 with sample space Ωn1,...,nk , where the number

of vertices with color ci is fixed to be ni - the same as the true value, for 1 ≤ i ≤ k. For a

mapping x ∈ Ωn1,...,nk , let G(x), T be defined as in (2.2), (2.3), respectively.

Given a sample T, the goal is to determine the color assignment function y. Let ŷ be

defined by (2.4). Note that for all x ∈ Ωn1,...,nk ,

‖G(x)‖2F = 2
∑

1≤i<j≤k
ninj(ci − cj)2,

which depends only on n1, . . . , nk, but is independent of x. Then we have

ŷ = argmaxx∈Ωn1,...,nk
〈G(x),T〉

Let

p(ŷ, σ) = Pr(ŷ = y),(3.1)

where y ∈ Ωn1,...,nk is the true color assignment function.
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For each x ∈ Ωn1,...,nk , define

f(x) = 〈G(x),T〉

Then

p(ŷ, σ) = Pr

(
f(y) > max

x∈Ωn1,...,nk\{y}
f(x)

)

Note that

f(x)− f(y) = 〈G(y),G(x)−G(y)〉+ σ〈W,G(x)−G(y)〉.

The expression above shows that f(x) − f(y) is a Gaussian random variable with mean

〈G(y),G(x)−G(y)〉 and variance σ2‖G(x)−G(y)‖2F .

For i, j ∈ [k], x, y ∈ Ωn1,...,nk , let

Si,j(x, y) = {l ∈ [n] : x(l) = ci, y(l) = cj};(3.2)

i.e., Si,j(x, y) consists of all the vertices which have color ci in x and color cj in y.

Let ti,j(x, y) = |Si,j(x, y)|, i.e., ti,j is the total number of vertices which have color ci in

x and color cj in y. We may write ti,j (resp. Si,j) instead of ti,j(x, y) (resp. Si,j(x, y)) when

there is no confusion. Note that since x, y ∈ Ωn1,...,nk , we have

∑
j∈[k]

ti,j = ni, ∀i ∈ [k](3.3)

∑
i∈[k]

ti,j = nj , ∀j ∈ [k](3.4)

For each vertex l ∈ Si,j , the inner product of the row in G(x) corresponding to l and the

row in G(y) corresponding to l is

〈Gl(x),Gl(y)〉 =
∑
r∈[n]

Gl,r(x)Gl,r(y)

=
∑
r∈[n]

[x(l)− x(r)] [y(l)− y(r)]

=
k∑

u=1

k∑
v=1

tu,v(ci − cu)(cj − cv)
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Then

〈G(x),G(y)〉 =
n∑
l=1

〈Gl(x),Gl(y)〉

=
∑

i,j,u,v∈[k]

ti,jtu,v(ci − cu)(cj − cv)(3.5)

= 2

 ∑
i,j∈[k]

ti,j · ci · cj

 ∑
u,v∈[k]

tu,v

− 2

 ∑
i,j∈[k]

ti,j · ci

 ∑
u,v∈[k]

tu,v · cv


= 2n

 ∑
i,j∈[k]

ti,j · ci · cj

− 2

∑
i∈[k]

ni · ci

2

,

where the last identity follows from (3.3) and (3.4).

Note that for i, j ∈ [k] and x ∈ Ωn1,...,nk ,

ti,j(x, x) =

{
ni if i = j;

0 else.

Therefore

〈G(y),G(y)〉 = 2n
∑
i∈[k]

[
ni · c2

i

]
− 2

∑
i∈[k]

ni · ci

2

For x, y ∈ Ωn1,...,nk , let

M(x, y) : = −E[f(x)− f(y)] = −〈G(y),G(x)−G(y)〉

= 2n
∑
i∈[k]

[
ni · c2

i

]
− 2n

 ∑
i,j∈[k]

ti,j · ci · cj

(3.6)

Then

Var[f(x)− f(y)] = 2σ2M(x, y)

Therefore we have

f(x)− f(y) ∼ N (−M(x, y), 2σ2M(x, y))

and

ξ :=
f(x, y) +M(x, y)

σ
√

2M(x, y)
∼ N (0, 1).

Then for x ∈ Ωn1,...,nk \ {y}

Pr (f(x)− f(y) > 0) = Prξ∼N (0,1)

(
ξ >

√
M(x, y)√

2σ

)
Using the standard Gaussian tail bound Prξ∈N (0,1)(ξ > x) < e−

1
2
x2 , we obtain

Pr (f(x)− f(y) > 0) ≤ e−
M(x,y)

4σ2
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Then

1− p(ŷ;σ) ≤
∑

x∈Ωn1,...,nk\{y}

Pr(f(x)− f(y) > 0)(3.7)

=
∑

x∈Ωn1,...,nk\{y}

Prξ∼N (0,1)

(
ξ >

√
M(x, y)√

2σ

)

≤
∑

x∈Ωn1,...,nk\{y}

e−
M(x,y)

4σ2

Lemma 3.1. Let y ∈ Ωn1,...,nk be the fixed color assignment mapping, and let x change

over Ωn1,...,nk . Under the constraints (3.3) and (3.4), M(x, y) achieves its minimum if and

only if

ti,i = ni

ti,j = 0, if i 6= j.

and the minimal value of M(x, y) is 0.

Proof. Note that ∑
i,j∈[k]

ti,j · ci · cj ≤
∑
i,j∈[k]

(c2
i + c2

j )ti,j

2
=
∑
i∈[k]

[ni · c2
i ];

where the identity holds if and only if

• ci = cj whenever ti,j 6= 0.

Then the lemma follows from the assumption that ci 6= cj whenever i 6= j. �

Before proving Theorem 2.1, we introduce a definition.

Definition 3.2. Let l ≥ 2 be a positive integer. Let x, y ∈ Ωn1,...,nk . We say l distinct

colors (i1, . . . , il) ∈ [k]l is an l-cycle for (x, y), if tis−1,is(x, y) > 0 for all 2 ≤ s ≤ l + 1,

where il+1 := i1.

Lemma 3.3. Let x, y ∈ Ωn1,...,nk and x 6= y. Then there exists an l-cycle for (x, y) with

2 ≤ l ≤ k.

Proof. Since x 6= y and x, y ∈ Ωn1,...,nk , there exists i1 ∈ [k], such that ti1,i1(x, y) < ni1 .

Since
∑

j∈[k] ti1,j(x, y) = ni1 , there exists i2 ∈ ([k] \ {i1}), such that ti1,i2(x, y) > 0. The

following cases might occur:

• If ti2,i1(x, y) > 0, then we find a 2-cycle (i1, i2) for (x, y).

• If ti2,i1(x, y) = 0, since ti1,i2(x, y) > 0 and
∑

j∈[k] tj,i2(x, y) = ni2 , we obtain

that ti2,i2(x, y) < ni2 . Moreover, since
∑

j∈[k] ti2,j(x, y) = ni2 , there exists i3 ∈
([k] \ {i1, i2}), such that ti2,i3(x, y) > 0.

• If ti3,i1(x, y) > 0, then we find a 3-cycle (i1, i2, i3) for (x, y).

In general, let s ≥ 2. Assume we find distinct i1, i2, . . . , is+1 ∈ [k], such that

• for each 1 ≤ r ≤ s, we have tis,is+1(x, y) > 0; and
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• tis+1,i1(x, y) = 0.

Since
∑

j∈[k] tj,is+1(x, y) = nis+1 , we have tis+1,is+1(x, y) < nis+1 . Since
∑

j∈[k] tis+1,j(x, y) =

nis+1 , there exists is+2 ∈ ([k] \ {is+1, i1}), such that tis+1,is+2(x, y) > 0. The following cases

might occur

(1) if is+2 = ir, for some 2 ≤ r ≤ s. Then we find a (s+ 2− r)-cycle (ir, ir+1 . . . , is+1)

for (x, y).

(2) if is+2 6= ir, for all 1 ≤ r ≤ s+ 1, but there exists 1 ≤ g ≤ s+ 1, such that

tis+2,tig > 0(3.8)

Then let gM ∈ [s + 1] be the maximal g ∈ [s + 1] such that (3.8) holds. Then we

find a (s+ 3− gM )-cycle (igM , igM+1, . . . , is+2) cycle for (x, y).

(3) if neither (1) or (2) occurs, increase s by 1 and repeat the above process.

Since there are k distinct colors in total, we can always find an l-cycle for (x, y) with

2 ≤ l ≤ k. �

To measure the difference between two color assignment functions x, y ∈ Ωn1,...,nk , we

introduce the following definition.

Definition 3.4. Define the distance function on Ω DΩ : Ω× Ω→ N as follows

DΩ(x, y) = n−
∑
i∈[k]

ti,i(x, y)

Proposition 3.5. Assume δ ∈
(
0, 1

2

)
, such that

log k − δ log n

1− δ
≤ −B0 < 0(3.9)

and

σ2 <
(1− δ)C0n

4 log n
(3.10)

where C0 > 0 is a constant given by

C0 = min
1≤i<j≤k

(ci − cj)2(3.11)

Then

p(ŷ;σ) ≥ 2− e
e−2B0

(1−e−B0 )(1−e−2B0 ) ;(3.12)

where p(ŷ;σ) is given by (6.1).

Proof. Let

I :=
∑

x∈Ωn1,...,nk\{y}

e−
M(x,y)

4σ2 .(3.13)

By (3.7), it suffices to show that limn→∞ I = 0.

We shall find an upper bound for I.

Recall that y ∈ Ωn1,...,nk is the true color assignment mapping. Since x 6= y, by Lemma

3.3, there exists an l-cycle (i1, . . . , il) for (x, y) with 2 ≤ l ≤ k. Then for each 2 ≤ s ≤ (l+1),
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choose an arbitrary vertex us in Sis−1,is(x, y), and let y1(us) = cis−1 , where il+1 := i1. For

any vertex z ∈ [n] \ {u2, . . . , ul+1}, let y1(z) = y(z).

Note that y1 ∈ Ωn1,...,nk . More precisely, for 1 ≤ s ≤ l, we have

tis,is(x, y) + 1 = tis,is(x, y1);

tis,is+1(x, y)− 1 = tis,is+1(x, y1)

and

ta,b(x, y) = ta,b(x, y1), ∀(a, b) /∈ {(is, is), (is, is+1)}ls=1.

From (3.6) we obtain

M(x, y1)−M(x, y) = −2n
∑
a,b∈[k]

[ta,b(x, y1)− ta,b(x, y)] cacb

= −2n

∑
s∈[l]

(c2
is − ciscis+1)


= −n

∑
s∈[l]

(cis − cis+1)2


≤ −nlC0

where C0 is given in (3.11). Therefore

e−
M(x,y)

4σ2 ≤ e−
M(x,y1)

4σ2 e−
nlC0
4σ2 .(3.14)

If y1 6= x, we find an l2-cycle (2 ≤ l2 ≤ k) for (x, y1), change colors along the l2-cycle

as above, and obtain another cycle assignment mapping y2 ∈ Ωn1,...,nk , and so on. Let

y0 := y, and note that for each r ≥ 1, if yr is obtained from yr−1 by changing colors along

an lr cycle, we have

DΩ(x, yr) = DΩ(x, yr−1)− lr

Therefore finally we can obtain x from y by changing colors along at most
⌊
n
2

⌋
cycles.

Using similar arguments as those used to derive (6.18), we obtain that for each r

e−
M(x,yr−1)

4σ2 ≤ e−
M(x,yr)

4σ2 e−
nlrC0
4σ2 .

Therefore if ys = x for some 1 ≤ s ≤
⌊
n
2

⌋
, we have

e−
M(x,y)

4σ2 ≤ e−
M(x,ys)

4σ2 e−
nC0(

∑
i∈[s] li)

4σ2 .

By (3.6), we have M(x, ys) = M(x, x) = 0, hence

e−
M(x,y)

4σ2 ≤
∏
i∈[s]

e−
nC0li
4σ2 .

Note also that for any r1 6= r2, in the process of obtaining yr1 from yr1−1 and the process

of obtaining yr2 from yr2−1, we change colors on disjoint sets of vertices. Hence the order
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of these steps of changing colors along cycles does not affect the final color assignment

mapping we obtain. From (3.13) we obtain

I ≤
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
nmllC0

4σ2

− 1(3.15)

On the right hand side of (6.19), when expanding the product, each summand has the form[
(nk)2m2e−

2m2nC0
4σ2

]
·
[
(nk)3m3e−

3m3nC0
4σ2

]
· . . . ·

[
(nk)kmke−

kmknC0
4σ2

]
where the factor

[
(nk)2m2e−

2m2nC0
4σ2

]
represents that we changed along 2-cycles m2 times,

the factor

[
(nk)3m3e−

3m3nC0
4σ2

]
represents that we changed along 3-cycles m3 times, and

so on. Moreover, each time we changed along an l-cycle, we need to first determine the

l different colors involved in the l-cycle, and there are at most kl different l-cycles; we

then need to chose l vertices to change colors, and there are at most nl choices. It is

straightforward to check that if σ satisfies (3.10), then

nke−
nC0
4σ2 ≤ elog k− δ logn

1−δ

as n→∞. Therefore we have
∞∑

ml=0

(nk)mlle−
nmllC0

4σ2 ≤ 1

1− el log k− δl logn
1−δ

Let

U :=
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
nmllC0

4σ2

 .

Since log(1 + x) ≤ x for x ≥ 0, we have

0 ≤ logU =
k∑
l=2

log

1 +
∞∑

ml=1

(nk)mlle−
nmllC0

4σ2


≤

k∑
l=2

∞∑
ml=1

(nk)mlle−
nmllC0

4σ2

≤
k∑
l=2

(
elog k− δ logn

1−δ
)l

1−
(
elog k− δ logn

1−δ
)l

≤ e2 log k− 2δ logn
1−δ(

1− e2 log k− 2δ logn
1−δ

)(
1− elog k− δ logn

1−δ
)

Then the proposition follows from (3.9). �
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Corollary 3.6. Assume δ ∈
(
0, 1

2

)
, such that

lim
n→∞

log k − δ log n

1− δ
= −∞.

Assume (3.10) holds. Then

lim
n→∞

p(ŷ;σ) = 1.

Proof. The corollary follows from (3.12) by letting B0 →∞. �

Proposition 3.7. Let C0 > 0 be defined by (3.11), and y ∈ Ωn1,...,nk be the true color

assignment mapping. Assume there exists u, v ∈ [k], such that

(cu − cv)2 = C0,

and

log min{nu, nv}
log n

≥ β > 0.(3.16)

Assume

δ =

(
1 +

4

β

)
log logn

log n
,(3.17)

and

σ2 >
(1 + δ)C0n

4β log n
(3.18)

then

lim
n→∞

p(ŷ;σ) = 0,

where β is a constant independent of n as n→∞, while the total number of colors k, the

set of colors Rk, and C0 may depend on n.

Proof. For y ∈ Ωn1,...,nk , a, b ∈ [n] such that cu = y(a) 6= y(b) = cv. Let y(ab) ∈ Ωn1,...,nk be

the coloring of vertices defined by

y(ab)(i) =


y(i) if i ∈ [n] \ {a, b}
cv if i = a

cu if i = b

(3.19)

Then

tu,v(y
(ab), y)− 1 = tu,v(y, y) = 0

tu,u(y(ab), y) + 1 = tu,u(y, y) = nu

tv,u(y(ab), y)− 1 = tv,u(y, y) = 0

tv,v(y
(ab), y) + 1 = tv,v(y, y) = nv.

and

ti,j(y
(ab), y) = ti,j(y), ∀ (i, j) ∈

(
[k]2 \ {(u, u), (u, v), (v, u), (v, v)}

)
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Note that

1− p(ŷ;σ) ≥ Pr
(
∪a,b∈[n],cu=y(a) 6=y(b)=cv [f(y(ab))− f(y) > 0]

)
,

since any of the event [f(y(ab))− f(y) > 0] implies ŷ 6= y. By (3.6) we obtain

f(y(ab))− f(y) = 〈G(y),G(y(ab))−G(y)〉+ σ〈W,G(y(ab))−G(y)〉
= −2n(cu − cv)2 + σ〈W,G(y(ab))−G(y)〉.

So 1− p(ŷ;σ) is at least

Pr
(
∪a,b∈[n],cu=y(a)6=y(b)=cv [f(y(ab))− f(y) > 0]

)
≥ Pr

(
maxa,b∈[n],cu=y(a) 6=y(b)=cvσ〈W,G(y(ab))−G(y)〉 > 2nC0

)
For i ∈ {u, v}, let Hi ⊂ y−1(ci) such that

|Hi| =
min{nu, nv}

log2 n
= h.(3.20)

Then

1− p(ŷ;σ) ≥ Pr
(

maxa∈Hu,b∈Hvσ〈W,G(y(ab))−G(y)〉 > 2nC0

)
Let (X ,Y,Z) be a partition of [n]2 defined by

X = {α = (α1, α2) ∈ [n]2, {α1, α2} ∩ [Hu ∪Hv] = ∅}
Y = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hu ∪Hv]| = 1}
Z = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hu ∪Hv]| = 2}

For η ∈ {X ,Y,Z}, define the n× n matrix Wη from the entries of W as follows

Wη(i, j) =

{
0 if (i, j) /∈ η
W(i, j), if (i, j) ∈ η

For each a ∈ Hu and b ∈ Hv, let

Xab = 〈WX ,G(y(ab))−G(y)〉
Yab = 〈WY ,G(y(ab))−G(y)〉
Zab = 〈WZ ,G(y(ab))−G(y)〉

Lemma 3.8. The followings are true:

(1) Xab = 0 for a ∈ Hu and b ∈ Hv.

(2) For each a ∈ Hu and b ∈ Hv, the variables Yab and Zab are independent.

(3) Each Yab can be decomposed into Ya+Yb where {Ya}a∈Hu ∪{Yb}b∈Hv is a collection

of i.i.d. Gaussian random variables.
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Proof. Note that for i, j ∈ [n],

Gi,j(y
(ab))−Gi,j(y) =



cv − cu if i = a, j /∈ {a, b}
cu − cv if i /∈ {a, b}, j = a

cu − cv if i = b, j /∈ {a, b}
cv − cu if i /∈ {a, b}, j = b

2(cv − cu) if (i, j) = (a, b)

2(cu − cv) if (i, j) = (b, a)

0 otherwise.

(3.21)

It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.
For s ∈ Hu ∪Hv, let Ys ⊆ Y be defined by

Ys = {α = (α1, α2) ∈ Y : α1 = s, or α2 = s}.

Note that for s1, s2 ∈ Hu ∪Hv and s1 6= s2, Ys1 ∩ Ys2 = ∅. Moreover, Y = ∪s∈Hu∪HvYs.
Therefore

Yab =
∑

s∈Hu∪Hv

〈WYs ,G(y(ab))−G(y)〉

Note also that 〈WYs ,G(y(ab))−G(y)〉 = 0, if s /∈ {a, b}. Hence

Yab =
∑

α∈Ya∪Yb

[W(α)] · {[G(y(ab))−G(y)](α)}

From (3.21) we obtain that for α = (α1, α2) ∈ Ya and α1 6= α2,

[G(y(ab))−G(y)](α) =

{
cv − cu if α1 = a

cu − cv if α2 = a.

So, we can define

Ya :=
∑
α∈Ya

[W(α)] · {[G(y(ab))−G(y)](α)}

=

 ∑
α∈Ya;α1=a

[W(α)]−
∑

α∈Ya;α2=a

[W(α)]

 (cv − cu)

Similarly, define

Yb :=

 ∑
α∈Yb;α2=b

[W(α)]−
∑

α∈Yb;α1=b

[W(α)]

 (cv − cu)

Then Yab = Ya + Yb and {Ys}s∈Hu∪Hv is a collection of independent Gaussian random

variables. Moreover, the variance of Ys is equal to (2n− 4h)C0 independent of the choice

of s. �
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By the Lemma 3.8, we obtain

〈W,G(y(ab))−G(y)〉 = Ya + Yb + Zab

Moreover,

max
a∈Hu,b∈Hv

Ya + Yb + Zab ≥ max
a∈Hu,b∈Hv

(Ya + Yb)− max
a∈Hu,b∈Hv

(−Zab)

= max
a∈Hu

Ya + max
b∈Hv

Yb − max
a∈Hu,b∈Hv

(−Zab)

Recall the following tail bound result on the maximum of Gaussian random variables:

Lemma 3.9. Let G1, . . . , GN be Gaussian random variables with variance 1. Let ε ∈ (0, 1).

Then

Pr

(
max

i=1,...,N
Gi > (1 + ε)

√
2 logN

)
≤ N−ε

and moreover, if Gi’s are independent, and ε,N satisfy

N ε−ε2(1− ε)
√

2 logN√
2π(1 + 2(1− ε)2 logN)

> 1(3.22)

Then

Pr

(
max

i=1,...,N
Gi < (1− ε)

√
2 logN

)
≤ exp(−N ε)

The proof of Lemma 3.9 is in the appendix.

By Lemma 3.9 we obtain that when ε, h satisfy (3.22) with N replaced by h, each one

of the following two events

E1 :=

{
max
a∈Hu

Ya ≥ (1− ε)
√

2 log h · 2C0 (n− 2h)

}
E2 :=

{
max
b∈Hv

Yb ≥ (1− ε)
√

2 log h · 2C0 (n− 2h)

}
has probability at least 1− e−hε . Moreover, the event

E3 :=

{
max

a∈Hu,b∈Hv
Zab ≤ (1 + ε)

√
4 log h ·max Var(Zab)

}
occurs with probability at least 1− h−2ε. Then by (3.21) we have

VarZab = ‖G(y(ab))−G(y)‖2F −Var(Ya)−Var(Yb)

= 4nC0 − 4C0 (n− 2h)

= 8hC0

Hence the probability of the event

E :=

{
max

a∈Hu,b∈Hv
〈W,G(y(ab))−G(y)〉 ≥ 4(1− ε)

√
log hC0(n− 2h)− 4(1 + ε)

√
2C0h log h

}
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is at least

Pr(E1 ∩ E2 ∩ E3) = 1− Pr(Ec1 ∪ Ec2 ∪ Ec3)

≥ 1− Pr(Ec1)− Pr(Ec2)− Pr(Ec3)

≥ 1− 2e−h
ε − h−2ε.

Moreover, from (6.25) we obtain

4(1− ε)
√
C0(n− 2h) log h− 4(1 + ε)

√
2C0h log h

= 4
√
C0(n− 2h) log h

[
1− ε− (1 + ε)

√
2h

n− 2h

]

≥ 4
√
C0(n− 2h) log h

[
1− ε− 2

log n

]
By (3.16) we have

4
√
C0(n− 2h) log h

[
1− ε− 2

log n

]

≥ 4

√
C0nβ log n

(
1− 2

log2 n

)(
1− 2 log log n

β log n

)[
1− ε− 2

log n

]
Let

ε =
log log n

β log n
;(3.23)

then when n is sufficiently large, (3.22) holds with N replaced by h. Define an event

Ẽ : =

{
max

a∈Hu,b∈Hv
〈W,G(y(ab))−G(y)〉

≥ 4

√
C0nβ log n

(
1− 2

log2 n

)(
1− 2 log log n

β log n

)[
1− log log n

β log n
− 2

log n

]}
Then E ⊆ Ẽ

When (3.17) and (3.18) hold, we have

Pr
(

maxa,b∈{1,2,...,n},y(a)6=y(b)σ〈W,G(y(ab))−G(y)〉 > 2C0n
)

≥ Pr(Ẽ) ≥ Pr(E) ≥ 1− 1

log n
,

as n is sufficiently large. Then the proposition follows. �

4. Proof of Theorem 2.1 when the number of vertices in each color is

arbitrary in the sample space

Now we consider the MLE in Theorem 2.1 whose sample space consists of all the possible

mappings from [n] to Rk, with no constraints on the number of vertices in each color.

Assume that for each x ∈ Ω, n1(x), . . . , nk(x) are arbitrary positive integers satisfying

(2.1) and denoting the number of vertices in the colors c1, . . . , ck under the mapping x,
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respectively. For a mapping x ∈ Ω, let G(x) be defined as in (2.2). Let y be the true color

assignment mapping, and let T be defined as in (2.3).

Given a sample T, the goal is to determine the color assignment mapping y. Let y̌ be

defined by (2.5). Then

y̌ = argminx∈Ω

(
‖G(x)‖2F − 2〈G(x),T〉

)
Let

p(y̌, σ) = Pr(y̌ = y)

For x ∈ Ω, define

d(x) = ‖G(x)‖2F − 2〈G(x),T〉

Then

p(y̌, σ) = Pr

(
d(y) < min

x∈Ω\{y}
d(x)

)
Note that

d(x)− d(y) =(4.1)

‖G(x)‖2F − ‖G(y)‖2F − 2〈G(y),G(x)−G(y)〉 − 2σ〈W,G(x)−G(y)〉.

The expression above shows that d(x) − d(y) is a Gaussian random variable with mean

‖G(x)‖2F − ‖G(y)‖2F − 2〈G(y),G(x)−G(y)〉 and variance 4σ2‖G(x)−G(y)‖2F .

For i, j ∈ [k], let Si,j(x, y) be defined as in (3.2), and let ti,j(x, y) = |Si,j(x, y)|. Then∑
j∈[k]

ti,j(x, y) = ni(x), ∀i ∈ [k](4.2)

∑
i∈[k]

ti,j(x, y) = nj(y), ∀j ∈ [k](4.3)

Then as in (3.5),

〈G(x),G(y)〉 =
∑

i,j,u,v∈[k]

ti,jtu,v(ci − cu)(cj − cv)

= 2

 ∑
i,j∈[k]

ti,j · ci · cj

 ∑
u,v∈[k]

tu,v

− 2

 ∑
i,j∈[k]

ti,j · ci

 ∑
u,v∈[k]

tu,v · cv


= 2n

 ∑
i,j∈[k]

ti,j · ci · cj

− 2

∑
i∈[k]

ni(x) · ci

∑
j∈[k]

nj(y) · cj

 ,
where the last identity follows from (4.2) and (4.3).

In particular

〈G(y),G(y)〉 = 2n
∑
i∈[k]

[
ni(y) · c2

i

]
− 2

∑
i∈[k]

ni(y) · ci

2
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Let

Q(x, y) : = E[d(x)− d(y)] = ‖G(x)‖2F + ‖G(y)‖2F − 2〈G(x),G(y)〉(4.4)

= 2n
∑
i,j∈[k]

ti,j(x, y)(ci − cj)2 − 2

∑
i∈[k]

ni(x)ci −
∑
j∈[k]

nj(y)cj

2

=
∑

u,v,i,j∈[k]

tu,v(x, y)ti,j(x, y)(cu − cv − ci + cj)
2

Then

Var[d(x)− d(y)] = 4σ2Q(x, y)

For x ∈ Ω \ {y}

Pr (d(y)− d(x) > 0) = Prξ∼N (0,1)

(
ξ ≥

√
Q(x, y)

2σ

)

Using the standard Gaussian tail bound Prξ∈N (0,1)(ξ > x) < e−
1
2
x2 , we obtain

Pr (d(y)− d(x) > 0) ≤ e−
Q(x,y)

8σ2

Then

1− p(y̌;σ) ≤
∑

x∈Ω\{y}

Pr(d(y)− d(x) > 0)(4.5)

=
∑

x∈Ω\{y}

Prξ∼N (0,1)

(
ξ >

√
Q(x, y)

2σ

)

≤
∑

x∈Ω\{y}

e−
Q(x,y)

8σ2

Lemma 4.1. Let y ∈ Ω be the fixed true color assignment mapping, and assume that x

changes over Ω. Under the constraint (4.3), Q(x, y) achieves its minimum if

ti,i = ni(y)

ti,j = 0, if i 6= j.

and the minimal value of Q(x, y) is 0.

Proof. The lemma follows from (4.4). �

Let B be the set given by

B =

(t1,1, t2,1 . . . , tk,k) ∈
∏
j∈[k]

{0, 1, . . . , nj(y)}k :

k∑
i=1

ti,j(x, y) = nj(y)

 .

For a small positive number ε > 0, let Bε be the domain given by

Bε = {(t1,1, . . . , tk,k) ∈ B : ti,i ≥ ni(y)− nε, ∀ i ∈ [k]}
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Then ∑
x∈Ω\{y}

e−
Q(x,y)

8σ2 = J1 + J2

where

J1 =
∑

x∈Ω\{y}:(t1,1,...,tk,k)∈[B\Bε]

e−
Q(x,y)

8σ2 .

and

J2 =
∑

x∈Ω\{y}:(t1,1,...,tk,k)∈Bε

e−
Q(x,y)

8σ2 .

Fix a constant c > 0. Define a region

Rc := {(v1, . . . , vk) ∈ Rk :
∑
i∈[k]

vk = 1, and min
i∈[k]

vi ≥ c}.(4.6)

Lemma 4.2. Assume (
n1(y)

n
, . . . ,

nk(y)

n

)
∈ Rc(4.7)

and

(t1,1(x, y), . . . , tk,k(x, y)) ∈ B \ Bε.

Then if ε > 0 is small enough,

Q(x, y) ≥ 4C0ε
2n2(4.8)

where C0 > 0 is given by (3.11).

Proof. When (t1,1(x, y), . . . , tk,k(x, y)) ∈ D \ Dε, we have there exists 1 ≤ i ≤ k,∑
j∈[k],j 6=i

tj,i(x, y) ≥ nε

The following cases might occur

(1) there exists l ∈ [k], such that

tl,l(x, y) > nl(y)− nε

Then by (4.4)

Q(x, y) =
∑

u,v,i,j∈[k]

tu,v(x, y)ti,j(x, y)(cu − cv − ci + cj)
2

≥ tl,l(x, y)
∑

j∈[k],j 6=i

tj,i(x, y)(ci − cj)2

≥ (nl(y)− nε)εC0n

≥ (c− ε)εC0n
2,

where the last inequality follows from (4.7). Then (4.8) holds when ε ≤ c
5 .
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(2) For each b ∈ [k], we have ∑
a∈[k],a6=b

ua,b ≥ ε

Without loss of generality, assume that c1 > c2 > . . . > ck. Again by (4.4)

Q(x, y) =
∑

u,v,i,j∈[k]

tu,v(x, y)ti,j(x, y)(cu − cv − ci + cj)
2

≥
∑

i∈[k],i 6=1

∑
j∈[k],j 6=k

ti,1(x, y)tj,k(x, y)(ci − c1 − cj + ck)
2

≥ 4C0ε
2n2

�

Proposition 4.3. Let y be the true color assignment mapping. Assume all the following

conditions hold:

• (4.7) holds;

• The total number of colors k and the total number of vertices n satisfy

lim
n→∞

log k

log n
= 0.(4.9)

• The quotient of the maximal difference of two colors and the minimal difference of

two colors is uniformly bounded for all n; that is,

sup
n

maxu,v∈[k] |cu − cv|
minu,v∈[k],u 6=v |cu − cv|

<∞(4.10)

• there exists δ > 0 (independent of n), such that

σ2 <
(1− δ)C0n

4 log n
(4.11)

where C0 > 0 is defined by (3.11).

Then

lim
n→∞

p(y̌;σ) = 1.

Proof. First of all, for any fixed ε > 0, if (4.11) holds, then σ ∼ o(
√
n), by (4.7) and Lemma

4.2 we obtain that

J1 ≤
∑

x∈Ω\{y}

e−
C0ε

2n2

2σ2

Note that

|Ω| ≤ kn

Hence

J1 ≤ e
n

(
log k− 2ε2 logn

1−δ

)
→ 0

as n→∞, for all ε > 0 by (4.9).
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Now let us consider J2. Let x ∈ Ω be an arbitrary color assignment mapping. Then x

can be obtained from y as follows:

(1) If for all (i, j) ∈ [k]2, i 6= j, ti,j(x, y) = 0, then x = y.

(2) If x 6= y, find the least (a, b) ∈ [k]2 in lexicographic order such that a 6= b and

ta,b(x, y) > 0. Arbitrarily choose a vertex u in y−1(cb) and define y1 ∈ Ω by

y1(z) :=

{
ca if z = u

y(z) if z ∈ [n] \ u

Then we obtain

ta,b(x, y1) + 1 = ta,b(x, y)

ta,a(x, y1)− 1 = ta,a(x, y)

ti,j(x, y1) = ti,j(x, y), ∀ (i, j) ∈ [k]2 \ {(a, b), (a, a)}

Recall from (4.4) that

Q(x, y) = 2n
∑
i,j∈[k]

ti,j(x, y)(ci − cj)2 − 2

 ∑
i,j∈[k]

ti,j(x, y)(ci − cj)

2

;

hence we have

Q(x, y1)−Q(x, y)

= −2n(ca − cb)2 + 2

 ∑
i,j∈[k]

ti,j(x, y)(cu − cv)

2

− 2

 ∑
i,j∈[k]

ti,j(x, y)(cu − cv)− (ca − cb)

2

= −(2n+ 2)(ca − cb)2 + 4(ca − cb)

 ∑
i,j∈[k]

ti,j(x, y)(ci − cj)


≤ −(2n+ 2)C0 + C1εn,

where C1 > 0 is a constant given by

C1 := 4k
√
C0 max

p,q∈[k]
|cp − cq|

Therefore

e−
Q(x,y)

8σ2 ≤ e−
Q(x,y1)

8σ2 e−
n

8σ2
[2C0+ 2

n
C0−C1ε]

Recall the distance in Ω was defined by (3.4). Note that

dΩ(x, y1) = dΩ(x, y)− 1

In general for r ≥ 1, if we obtained yr, we can obtain yr+1 as follows:

(1) If for all (i, j) ∈ [k]2, i 6= j, ti,j(x, y) = 0, then x = yr.
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(2) If x 6= yr, find the least (a, b) ∈ [k]2 in lexicographic order such that a 6= b and

ta,b(x, yr) > 0. Arbitrarily choose a vertex u in y−1
r (cb) and define yr+1 ∈ Ω by

yr+1(z) :=

{
ca if z = u

yr(z) if z ∈ [n] \ u

Then by the same arguments as before, we have

dΩ(x, yr+1) = dΩ(x, yr)− 1

and

e−
Q(x,yr)

8σ2 ≤ e−
Q(x,yr+1)

8σ2 e−
n

8σ2
[2C0+ 2

n
C0−C1ε](4.12)

By (3.4), we have for any x, y ∈ Ω, DΩ(x, y) ≤ n. Therefore if x 6= y, there exists

1 ≤ l ≤ n, such that ys = x. By (4.12) we have

e−
Q(x,y)

8σ2 ≤ e−
Q(x,yl)

8σ2 e−
nl
8σ2

[2C0+ 2
n
C0−C1ε]

= e−
nl
8σ2

[2C0+ 2
n
C0−C1ε];

where the last identity follows from (4.4) and

e−
Q(x,yl)

8σ2 = e−
Q(x,x)

8σ2 = 1.

Therefore

J2 ≤
∞∑
l=1

(nk)le−
[(2n+2)C0−C1εn]l

8σ2(4.13)

In the sum, l represents DΩ(x, y). If DΩ(x, y) = l, then x can be obtained from y by

changing colors at l vertices, each time there are at most n choices of vertices, and the

color of each chosen vertex is changed to one of the k choices of colors. That is where the

factor (nk)l on the right hand side comes from.

When σ satisfies (4.11), we have

(nk)e−
[(2n+2)C0−C1εn]

8σ2 < e
log k−logn

(
δ

1−δ+ 1
n(1−δ)−

C1ε
2(1−δ)C0

)

Then for (4.13) we obtain

J2 ≤
e

log k−logn
(

δ
1−δ+ 1

n(1−δ)−
C1ε

2(1−δ)C0

)
1− elog k−logn

(
δ

1−δ+ 1
n(1−δ)−

C1ε
2(1−δ)C0

)
By (4.9) and (4.10), we can choose 0 < ε < 2C0δ

C1
independent of n, then limn→∞ J2 = 0.

Then the proposition follows from (4.5) and the fact that 1− p(y̌;σ) ≤ J1 + J2. �

Let C0 be defined as in (3.11). Let

Am := {cu ∈ [k], ∃cv ∈ [k], s.t.(cu − cv)2 = C0}.
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Proposition 4.4. Assume for all n,

log |y−1(Am)|
log n

≥ β > 0(4.14)

where β is a constant independent of n.

Assume

δ =

(
1 +

4

β

)
log logn

log n
,(4.15)

and

σ2 >
(1 + δ)C0n

4β log n
(4.16)

then

lim
n→∞

p(ŷ;σ) = 0,

Proof. For y ∈ Ω, a ∈ [n] such that y(a) = cu ∈ Am. Assume cv ∈ [k] such that (cu−cv)2 =

C0. Define y(a) ∈ Ω as follows:

y(a)(i) =

{
y(i) if i ∈ [n] \ {a}
cv if i = a

Then

tu,u(y(a), y) = nu(y)− 1;

tv,u(y(a), y) = 1;

ti,i(y
(a), y) = ni(y), if i ∈ [k] \ {u};

ti,j(y
(a), y) = 0, if (i, j) ∈ [k]2 \ {(v, u)} and i 6= j;

and for z, w ∈ [n]

Gzw(y(a))−Gzw(y) =


cv − cu if z = a, w 6= a

cu − cv if z 6= a, w = a

0 Otherwise

(4.17)

Note also that

1− p(y̌;σ) ≥ Pr
(
∪a∈[n],y(a)∈Amd(y(a))− d(y) < 0]

)
,

since any of the event [d(y(a))− d(y) < 0] implies y̌ 6= y.

By (4.1) we have

d(y(a))− d(y) = ‖G(y(a))−G(y)‖2F − 2σ〈W,G(y(a))−G(y)〉
= (2n− 2)(cu − cv)2 − 2σ〈W,G(y(a))−G(y)〉.
= (2n− 2)C0 − 2σ〈W,G(y(a))−G(y)〉
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So 1− p(y̌;σ) is at least

Pr
(
∪a,∈[n],y(a)∈Am [d(y(a))− d(y) < 0]

)
≥ Pr

(
maxa∈[n],y(a)∈Amσ〈W,G(y(a))−G(y)〉 > (n− 1)C0

)
Let H ⊂ y−1(Am) such that

|H| = |y
−1(Am)|
log2 n

= h.(4.18)

Then

1− p(y̌;σ) ≥ Pr
(

maxa∈Hσ〈W,G(y(a))−G(y)〉 > (n− 1)C0

)
Let (X ,Y,Z) be a partition of [n]2 defined by

X = {α = (α1, α2) ∈ [n]2, {α1, α2} ∩H| = ∅}
Y = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩H| = 1}
Z = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩H| = 2}

For η ∈ {X ,Y,Z}, define the n× n matrix Wη from the entries of W as follows

Wη(i, j) =

{
0 if (i, j) /∈ η
W(i, j), if (i, j) ∈ η

For each a ∈ H, let

X (a) = 〈WX ,G(y(a))−G(y)〉
Y(a) = 〈WY ,G(y(a))−G(y)〉
Z(a) = 〈WZ ,G(y(a))−G(y)〉

Claim 4.5. The followings are true:

(1) X (a) = 0 for a ∈ H.

(2) For each a ∈ H, the variables Y(a) and Z(a) are independent.

(3) {Y(a)}a∈H is a collection of i.i.d. Gaussian random variables.

Proof. It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.
For s ∈ H, let Ys ⊆ Y(a) be defined by

Ys = {α = (α1, α2) ∈ Y : α1 = s, or α2 = s}.

Note that for s1, s2 ∈ H and s1 6= s2, Ys1 ∩ Ys2 = ∅. Moreover, Y = ∪s∈HYs. Therefore

Y(a) =
∑
s∈H
〈WYs ,G(y(a))−G(y)〉

Note also that 〈WYs ,G(y(a))−G(y)〉 = 0, if s 6= a. Hence

Y(a) =
∑
α∈Ya

[W(α)] · {[G(y(a))−G(y)](α)}
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From (4.17) we obtain that α = (α1, α2) ∈ Ya with α1 6= α2,

[G(y(a))−G(y)](α) =

{
cv − cu if α1 = a

cu − cv if α2 = a.

So,

Y(a) =
∑
α∈Ya

[W(α)] · {[G(y(a))−G(y)](α)}

=

 ∑
α∈Ya;α1=a

[W(α)]−
∑

α∈Ya;α2=a

[W(α)]

 (cv − cu)

and {Y(a)}a∈H is a collection of independent Gaussian random variables. Moreover, the

variance of Y(a) is equal to (2n− 2h)C0 independent of the choice of a. �

By the claim, we obtain

〈W,G(y(a))−G(y)〉 = Y(a) + Z(a)

Moreover,

max
a∈H
Y(a) + Z(a) ≥ max

a∈Hu

[
Y(a)

]
− max
a∈Hu

[
Z(a)

]
By the Lemma 3.9 we obtain when ε, h satisfy (3.22) with N replaced by h, the event

F1 :=

{
max
a∈H
Y(a) ≥ (1− ε)

√
2 log h · 2C0 (n− h)

}
has probability at least 1− e−hε ; and the event

F2 :=

{
max
a∈H
Z(a) ≤ (1 + ε)

√
2 log h ·max Var(Z(a))

}
with probability at least 1− h−ε. Moreover,

VarZ(a) = ‖G(y(a))−G(y)]‖2F −Var(Y(a))

= (2n− 2)C0 − 2C0 (n− h)

= C0(2h− 2)

Hence

[F1 ∩ F1] ⊆ F

where the event

F :=

{
max
a∈H
〈W,G(y(a))−G(y)〉 ≥

(
1− ε− (1 + ε)

√
h− 1

n− h

)√
2 log h · 2C0(n− h)

}
Hence

Pr(F ) ≥ Pr(F1 ∩ F2) = 1− Pr(F c1 ∪ F c2 ) ≥ 1− Pr(F c1 )− Pr(F c2 )

= Pr(F1) + Pr(F2)− 1 ≥ 1− h−ε − e−hε
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Moreover, by (4.14) and (4.18) we have(
1− ε− (1 + ε)

√
h− 1

n− h

)√
2 log h · 2C0(n− h)

≥ 2
√
C0βn log n

√
1− 2 log log n

β log n

√
1− 1

log2 n

(
1− ε− 2

log n

)
Let

F̃ :={
max
a∈H
〈W,G(y(a))−G(y)〉 ≥ 2

√
C0βn log n

√
1− 2 log log n

β log n

√
1− 1

log2 n

(
1− ε− 2

log n

)}
Then F ⊆ F̃ .

Let ε be given as in (6.27), then when n is sufficiently large (3.22) holds with N replaced

by h. When (4.15) and (4.16) hold,

Pr
(

maxa∈y−1(Am)σ〈W,G(y(ab))−G(y)〉 > 2C0n
)

≥ Pr(F̃ ) ≥ Pr(F ) ≥ 1− 1

log n
,

as n is sufficiently large. Then the proposition follows. �

5. Proof of Theorem 2.2 when the number of vertices in each color is

arbitrary in the sample space

Now we prove theorem 2.2 when the sample space for the MLE is Ω. Let y ∈ Ω be the

true color assignment mapping. Assume that for each x ∈ Ω,

ni(x) = |x−1(ci)|, for i ∈ [k]

are arbitrary positive integers satisfying (2.1) Let K(x) be defined as in (2.8), and R be

defined as in (2.9).

Given a sample R, we want to determine the the groups of vertices such that vertices

within each group have the same color under the mapping y. Let ỹ be defined as in (2.11).

Again for i, j ∈ [k], let Si,j(x, y) be defined as in (7.25), and ti,j(x, y) = |Si,j(x, y)|. Then∑
i∈[k]

ti,j(x, y) = nj(y);
∑
j∈[k]

ti,j(x, y) = ni(x);
∑
i,j∈[k]

ti,j(x, y) = n;(5.1)

and

〈K(x),K(y)〉 =
∑
a,b∈[n]

1x(a)6=x(b)1y(a)6=y(b)

=
∑
i,j∈[k]

ti,j(x, y) [n− ni(x)− nj(y) + ti,j(x, y)]

= n2 −
∑
i∈[k]

[ni(x)]2 −
∑
j∈[k]

[nj(y)]2 +
∑
i,j∈[k]

[ti,j(x, y)]2;(5.2)
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where

n− ni(x)− nj(y) + ti,j(x, y) = {u ∈ [n] : x(u) 6= i, and y(u) 6= j} ;

and (5.2) follows from (5.1). In particular,

〈K(y),K(y)〉 = n2 −
∑
j∈[k]

[nj(y)]2

Hence from (2.11) we obtain

ỹ = argmaxx∈Ω

 k∑
j=1

[nj(x)]2 + 2〈K(x),R〉


Define

g(x) :=
k∑
j=1

[nj(x)]2 + 2〈K(x),R〉;(5.3)

then

g(x)− g(y)(5.4)

= 2σ〈K(x)−K(y),W〉+ 2
∑
i,j∈[k]

[ti,j(x, y)]2 −
k∑
i=1

[ni(x)]2 −
k∑
j=1

[nj(y)]2.

Note that g(x) − g(y) is a Gaussian random variable with mean 2
∑

i,j∈[k][ti,j(x, y)]2 −∑k
i=1[ni(x)]2 −

∑k
j=1[nj(y)]2 and variance 4σ2‖K(x)−K(y)‖2F .

Let

L(x, y) =

k∑
i=1

[ni(x)]2 +

k∑
j=1

[nj(y)]2 − 2
∑
i,j∈[k]

[ti,j(x, y)]2(5.5)

Then it is straightforward to check that

‖K(x)−K(y)‖2F = L(x, y)(5.6)

Therefore

Pr(g(x)− g(y) > 0) = Prξ∼N (0,1)

(
ξ >

√
L(x, y)

2σ

)
≤ e−

L(x,y)

8σ2 ,

where the last inequality follows from the fact that if ξ ∼ N (0, 1), then for x > 0, Pr(ξ >

x) ≤ e−
x2

2 .

Definition 5.1. For y ∈ Ω, let C(y) consist of all the x ∈ Ω such that x can be obtained

from y by a permutation of colors. More precisely, x ∈ C(y) ⊂ Ω if and only if the following

condition holds

• for i, j ∈ [n], y(i) = y(j) if and only if x(i) = x(j).

We define an equivalence relation on Ω as follows: we say x, z ∈ Ω are equivalent if and

only if x ∈ C(z). Let Ω be the set of all the equivalence classes in Ω.
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We have the following elementary lemma:

Lemma 5.2. If x, z ∈ Ω are equivalent, then∑
i,j∈[k]

[ti,j(x, y)]2 =
∑
i,j∈[k]

[ti,j(z, y)]2

Proof. By definition if x, z ∈ Ω are equivalent, then there exists a permutation ω of [k],

such that for all l ∈ [n], we have

z(l) = ω(x(l)).(5.7)

Therefore for all i ∈ [k], the following two sets are equal:

x−1(i) = z−1(ω(i)).(5.8)

In other words, for any u ∈ [n] and i ∈ [k], x(u) = i if and only if z(u) = ω(i). Then we

have

ti,j(x, y) = tω(i),j(z, y)

by summing over all the i, j’s in [k], and using the fact that ω is a bijection from [k] to [k],

we obtain the lemma. �

Lemma 5.3. Let y ∈ Ω be the true color assignment mapping. If x and z are equivalent

elements in Ω, then for any chosen sample W, we have

g(x) = g(z).;(5.9)

and

L(x, y) = L(z, y).(5.10)

Moreover, if y∗ ∈ C(y), then

L(x, y) = L(x, y∗)(5.11)

Proof. From the definition (5.3) of g(x) we obtain

g(x) = 2〈K(x),K(y)〉+ 2σ〈K(x),W〉+

k∑
j=1

[nj(x)]2

Recall that Ki,j(x) = 1 if and only if x(i) 6= x(j); if x(i) = x(j), Ki,j(x) = 0. Since x and

z are equivalent x(i) 6= x(j) if and only if z(i) 6= z(j), therefore

K(x) = K(z).(5.12)

Moreover, if x and z are equivalent and (5.7) holds, by (5.8) we obtain x ∈ Ωnω(1)(z),...,nω(k)(z);

in particular this implies

k∑
j=1

[nj(x)]2 =
k∑
j=1

[nω(j)(z)]
2 =

k∑
j=1

[nj(z)]
2

Then we obtain (5.9). The expression (5.10) follows from (5.12) and (5.6). The expression

(5.11) follows from (5.10) by observing that the expression (5.5) of L(x, y) is symmetric in

x and y. �
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Let

p(ỹ, σ) = Pr(ỹ ∈ C(y))

Then

p(ỹ, σ) = Pr

(
g(y) > max

x∈Ω\C(y)
g(x)

)
;

hence

1− p(ỹ, σ) ≤
∑

C(x)∈Ω\{C(y)}

Pr(g(x)− g(y) ≥ 0) ≤
∑

C(x)∈Ω\{C(y)}

e−
L(x,y)

8σ2 .

Lemma 5.4. For any x, y ∈ Ω, L(x, y) ≥ 0, where the equality holds if and only if

x ∈ C(y).

Proof. By (5.1) and (5.5) we have

L(x, y)(5.13)

= 2

∑
i∈[k]

∑
1≤j1<j2≤k

ti,j1(x, y)ti,j2(x, y) +
∑
j∈[k]

∑
1≤i1<i2≤k

ti1,j(x, y)ti2,j(x, y)

 ≥ 0

We first note that L(x, y) = 0 if x ∈ C(y). Indeed, if x ∈ C(y), then there exists a

permutation ω : [k]→ [k], such that x = ω ◦ y. Then for all u ∈ [k] satisfying x(u) = i, we

have y(u) = ω−1(i). Then

ti,ω−1(i) = ni(x);

ti,j = 0, ∀ j ∈ [k] \ {ω−1(i)}.

Therefore for any j1, j2 ∈ [k] and j1 < j2, at least one of ti,j1(x, y) and ti,j2(x, y) is 0.

Similarly for any i1, i2 ∈ [k] and i1 < i2, at least one of ti1,j(x, y) and ti2,j(x, y) is 0. Then

L(x, y) = 0 by (5.13).

It remains to show that if L(x, y) = 0, then x ∈ C(y). Note that if L(x, y) = 0, then

ti,j1(x, y)ti,j2(x, y) = 0, ∀i ∈ [k], 1 ≤ j1 < j2 ≤ k; and

ti1,j(x, y)ti2,j(x, y) = 0, ∀j ∈ [k], 1 ≤ i1 < i2 ≤ k

Then for any fixed i ∈ [k], there exists exactly one j ∈ [k], such that ti,j 6= 0; and for

each fixed j ∈ [k], there exists exactly one i ∈ [k], such that ti,j 6= 0. Then the lemma

follows. �

Let B̃ be the set given by

B̃ =

{
(t1,1, t1,2, . . . , tk,k) ∈ {0, 1, . . . , n}k

2

:

k∑
i=1

ti,j = nj(y)

}
.(5.14)

For a small positive number ε > 0, let B̃ε be the set given by

B̃ε =
{

(t1,1, . . . , tk,k) ∈ B̃ : ∀ i ∈ [k],∃j ∈ [k], s.t. tj,i ≥ ni(y)− nε
}

(5.15)
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Lemma 5.5. Let Rc be defined in (4.6). When

(t1,1(x, y), . . . , tk,k(x, y)) ∈ B̃ \ B̃ε,(5.16)

and (4.7) hold, we have

L(x, y) ≥ cεn2

k
.

Proof. When (5.16) holds, by (5.15) we have there exists i0 ∈ [k], such that

ni0(y)−max
j∈[k]

tj,i0(x, y) ≥ εn.

By (5.13), we obtain

L(x, y) ≥ max
j∈[k]

tj,i0(x, y)

[
ni0(y)−max

j∈[k]
tj,i0(x, y)

]
≥ ni0(y)

k
εn

By (4.7), we have

ni0(y)

k
εn ≥ cεn2

k

�

Lemma 5.6. Let Rc be defined in (4.6). Assume (4.7) holds. Let x ∈ Ω satisfy(
n1(x)

n
,
n2(x)

n
, . . . ,

nk(x)

n

)
∈ R 2c

3
(5.17)

For i ∈ [k], let

tw(i),i(x, y) = max
j∈[k]

tj,i(x, y),(5.18)

where w(i) ∈ [k]. When ε ∈
(
0, 2c

3k

)
and (t1,1(x, y), . . . , tk,k(x, y)) ∈ B̃ε, w is a bijection

from [k] to [k].

Proof. When (t1,1(x, y), . . . , tk,k(x, y)) ∈ B̃ε, by (5.15) we have

max
j∈[k]

tj,i(x, y) > ni(y)− εn, ∀ i ∈ [k].

If there exist j1, j2 ∈ [k], such that j1 6= j2, and

tj1,i(x, y) = tj2,i(x, y) = max
j∈[k]

tj,i(x, y);

then

ni(y) ≥ tj1,i + tj2,i > 2ni(y)− 2εn ≥
(

2− 2ε

c

)
ni(y);

where the last inequality follows from (4.7). But this is impossible when ε < c
2 . Therefore

w(i) satisfying (5.18) is unique for each i ∈ [k], and w is a mapping from [k] to [k].

If there exist i, j ∈ [k] such that i 6= j and w(i) = w(j) = l ∈ [k]; then there exists

q ∈ [k], such that q 6= w(s) for all s ∈ [k]. More precisely,

tq,s(x, y) 6= max
r∈[k]

tr,s(x, y) > ns(y)− εn, ∀ s ∈ [k].
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By (5.1) we have

tq,s(x, y) ≤ εn, ∀s ∈ [k].(5.19)

Therefore
2cn

3
≤
∑
s∈[k]

tq,s(x, y) = nq(x) ≤ kεn,

where the first inequality follows from (5.17), and the last inequality follows from (5.19).

But this is impossible when ε < 2c
3k . The contradiction implies that w must be a bijection

from [k], and the lemma follows. �

We have the following proposition

Proposition 5.7. Let Rc be defined as in (4.6). Assume (4.7) and (5.17) holds. Recall

that k is the total number of colors. Here c, k may depend on n. Assume the following

conditions hold

lim
n→∞

log k

c3 log n
= 0;(5.20)

If there exists δ > 0 independent of n, such that

σ2 <
(1− δ)[nk(y) + nk−1(y)]

4 log n
(5.21)

then

lim
n→∞

p(ỹ;σ) = 1

Proof. Note that ∑
C(x)∈Ω\{C(y)}

e−
L(x,y)

8σ2 ≤ I3 + I4

where

I3 =
∑

C(x)∈Ω:(t1,1(x,y),...,tk,k(x,y))∈[B\B̃ε],C(x)6=C(y)

e
−L(x,y)

8σ2

and

I4 =
∑

C(x)∈Ω:(t1,1(x,y),...,tk,k(x,y))∈B̃ε,C(x)6=C(y)

e
−L(x,y)

8σ2 .

By Lemma 5.5, when (5.21) holds, we have

I3 ≤ kne
− cεn2 logn

2k(1−δ)[nk(y)+nk−1(y)]

Since

nk(y) + nk−1(y) ≤ 2n

k
,(5.22)

we have

I3 ≤ e
n
(

log k− cε logn
4(1−δ)

)
.(5.23)
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Now let us consider I4. Assume ε ∈
(
0, 2c

3k

)
. Let w be the bijection from [k] to [k] as

defined in (5.18). Let y∗ ∈ Ω be defined by

y∗(z) = w(y(z)), ∀z ∈ [n].

Then y∗ ∈ C(y). Moreover, x and y∗ satisfies

ti,i(x, y
∗) ≥ ni(y∗)− nε, ∀i ∈ [k].(5.24)

We consider the following color changing process to obtain x from y∗.

(1) If for all (j, i) ∈ [k]2, and j 6= i, tj,i(x, y
∗) = 0, then x = y∗.

(2) If (1) does not hold, find the least (j, i) ∈ [k]2 in lexicographic order such that j 6= i

and tj,i(x, y
∗) > 0. Choose an arbitrary vertex u ∈ Sj,i(x, y∗). Define y1 ∈ Ω as

follows

y1(z) =

{
cj if z = u

y∗(z) if z ∈ [n] \ {u}

Then we have

tj,i(x, y1) = tj,i(x, y
∗)− 1(5.25)

tj,j(x, y1) = tj,j(x, y
∗) + 1(5.26)

ta,b(x, y1) = ta,b(x, y
∗) ∀(a, b) ∈

(
[k]2 \ {(j, i), (j, j)}

)
.(5.27)

Therefore x and y∗ satisfies

ti,i(x, y1) ≥ ni(y1)− nε, ∀i ∈ [k].

From (5.11) and (5.13) we obtain

1

2
(L(x, y1)− L(x, y)) =

1

2
(L(x, y1)− L(x, y∗))

= tj,i(x, y1)

∑
l 6=i

tj,l(x, y1)

+ tj,j(x, y1)

∑
l 6=j

tj,l(x, y1)

− tj,i(x, y1)tj,j(x, y1)

+tj,i(x, y1)

∑
l 6=j

tl,i(x, y1)

+ tj,j(x, y1)

∑
l 6=j

tl,j(x, y1)


−

tj,i(x, y∗)
∑

l 6=i
tj,l(x, y

∗)

+ tj,j(x, y
∗)

∑
l 6=j

tj,l(x, y
∗)

− tj,i(x, y∗)tj,j(x, y∗)
+ tj,i(x, y

∗)

∑
l 6=j

tl,i(x, y
∗)

+ tj,j(x, y
∗)

∑
l 6=j

tl,j(x, y
∗)


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By (5.25) we obtain

tj,i(x, y1)

∑
l 6=i

tj,l(x, y1)

− tj,i(x, y∗)
∑

l 6=i
tj,l(x, y

∗)


= tj,i(x, y1) [nj(x)− tj,i(x, y1)]− tj,i(x, y∗) [nj(x)− tj,i(x, y∗)]
= tj,i(x, y

∗) + tj,i(x, y1)− nj(x)

Similarly by (5.26) we obtain

tj,j(x, y1)

∑
l 6=j

tj,l(x, y1)

− tj,j(x, y∗)
∑
l 6=j

tj,l(x, y
∗)


= nj(x)− tj,j(x, y1)− tj,j(x, y∗).

−tj,i(x, y1)tj,j(x, y1) + tj,i(x, y
∗)tj,j(x, y

∗) = −tj,i(x, y∗) + tj,j(x, y
∗) + 1

tj,i(x, y1)

∑
l 6=j

tl,i(x, y1)

− tj,i(x, y∗)
∑
l 6=j

tl,i(x, y
∗)

 = tj,i(x, y
∗)− ni(y∗)

tj,j(x, y1)

∑
l 6=j

tl,j(x, y1)

− tj,j(x, y∗)
∑
l 6=j

tl,j(x, y
∗)

 = nj(y
∗)− tj,j(x, y∗)

Therefore we obtain

L(x, y1)− L(x, y) = 2 [nj(y
∗)− ni(y∗)− 2tj,j(x, y

∗) + 2tj,i(x, y
∗)− 1]

Then by (6.17),

L(x, y1)− L(x, y) ≤ −2ni(y
∗)− 2nj(y

∗) + 8nε ≤ −2(nk−1(y) + nk(y)− 4nε)

Therefore when (5.21) holds,

e−
L(x,y)

8σ2 ≤ e−
L(x,y1)

8σ2 e
− logn

1−δ

(
1− 4nε

nk−1(y)+nk(y)

)
(5.28)

In general, if we have constructed yr (r ≥ 1), we shall construct yr+1 as follows.

(a) If for all (j, i) ∈ [k]2, and j 6= i, tj,i(x, yr) = 0, then x = yr.

(b) If (a) does not hold, find the least (j, i) ∈ [k]2 in lexicographic order such that j 6= i

and tj,i(x, yr) > 0. Choose an arbitrary vertex u ∈ Sj,i(x, yr). Define yr+1 ∈ Ω as

follows

yr+1(z) =

{
cj if z = u

yr(z) if z ∈ [n] \ {u}

Then if (6.17) holds with y∗ replaced by yr, then (6.17) holds with y∗ replaced by yr+1.

By similar computations as above we obtain

e−
L(x,yr)

8σ2 ≤ e−
L(x,yr+1)

8σ2 e
− logn

1−δ

(
1− 4nε

nk−1(y)+nk(y)

)
.(5.29)
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Recall that the distance DΩ in Ω is defined in (3.4). From the constructions of yr+1 we

have

DΩ(x, yr+1) = DΩ(x, y)− 1.

Therefore there exists s ∈ [n], such that ys = x. By (5.28) and (5.29) and the fact that

L(x, x) = 0 we obtain

e−
L(x,y)

8σ2 ≤ e
− s logn

1−δ

(
1− 4nε

nk−1(y)+nk(y)

)

Since any x in B̃ε can be obtained by y be the color changing process described above,

we have

I4 ≤
∞∑
l=1

(nk)le
− l logn

1−δ

(
1− 4nε

nk−1(y)+nk(y)

)
(5.30)

The right hand side of (5.30) is the sum of geometric series with both initial term and

common ratio equal to

V := e
log k−logn

(
δ

1−δ−
4nε

(1−δ)(nk−1(y)+nk(y))

)
(5.31)

By (4.7) we have

nk−1(y) + nk(y) ≥ 2cn

V ≤ elog k−logn
(

δ
1−δ−

2ε
c(1−δ)

)
(5.32)

Let

ε = min

{
c

2k
,
δc

4

}
<
c

k
;(5.33)

then from (5.23) and using the fact that c ≤ 1
k , we obtain

0 ≤ I3 ≤ e
n
(

log k−lognmin
(
c3

8
, δc

2

16

))
Then from (5.20), when n is sufficiently large

log k ≤ c3 log n

16
;

Since k ≥ 2 we have

n

(
log k − c3 log n

8

)
≤ −n log k → −∞,

as n→∞. Moreover, since c ≤ 1 from (5.20) we obtain

lim
n→∞

log k

c2 log n
= 0

Hence when n is sufficiently large, we obtain

n

(
log k − δc2 log n

16

)
≤ −n log k → −∞,

as n→∞.
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Therefore we obtain

lim
n→∞

I3 = 0.(5.34)

Moreover, when ε, V are given by (5.33) and (5.31), from (5.32) we obtain

0 ≤ V ≤ elog k− δ logn
2(1−δ)

By (5.20), for any constant δ > 0 independent of n, limn→∞ V = 0, therefore

lim
n→∞

I4 = lim
n→∞

V

1− V
= 0.(5.35)

Then the proposition follows from (5.34), (5.35) and the fact that 1−p(ỹ;σ) ≤ I3 + I4. �

Proposition 5.8. Let Rc be defined as in (4.6). Assume (4.7) and (5.17) holds. Here k

and c may depend on n. Assume n1(y) ≥ n2(y) ≥ . . . ≥ nk(y) and

log nk(y)

log n
≥ 1 +

log c

log n
≥ β > 0, ∀ n,(5.36)

where β is a constant independent of n.

Assume

δ =

(
1 +

4

β

)
log logn

log n
,(5.37)

and

σ2 >
(1 + δ)[nk(y) + nk−1(y)]

4β log n
,(5.38)

then

lim
n→∞

p(ỹ;σ) = 0.

Proof. For y ∈ Ω, a ∈ [n] such that ck−1 = y(a). Let y(a) ∈ Ω be defined by

y(a)(i) =

{
y(i) if i ∈ [n], and i 6= a

ck if i = a.

Then

tk,k−1(y(a), y) = 1;

tk−1,k−1(y(a), y) = nk−1(y)− 1;

ti,i(y
(a), y) = ni(y); ∀ i ∈ [k] \ {k − 1};

ti,j(y
(a), y) = 0; ∀(i, j) ∈ [k]2 \ {(k, k − 1)}, and i 6= j.

and

nk(y
(a)) = nk(y) + 1;

nk−1(y(a)) = nk−1(y)− 1;

ni(y
(a)) = ni(y); ∀ i ∈ [k] \ {k, k − 1}.
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Moreover,

1− p(ỹ;σ) ≥ Pr
(
∪a∈[n]∩y−1(ck−1)[g(y(a))− g(y) > 0]

)
Since any of the event [g(y(a))− g(y) > 0] implies ỹ 6= y.

From (5.2) we obtain

〈K(y),K(y(a))−K(y)〉 =
∑
i,j∈[k]

[ti,j(y
(a), y)]2 −

∑
i∈[k]

[ni(y
(a))]2 = −2nk(y)(5.39)

Then from (5.4) we have

g(y(a))− g(y) =
∑
i∈[k]

[ni(y
(a))]2 −

∑
i∈[k]

[ni(y)]2 + 2〈K(y),K(y(a))−K(y)〉+ 2σ〈W,K(y(a))−K(y)〉

= −2nk−1(y)− 2nk(y) + 2 + 2σ〈W,K(y(a))−K(y)〉.

Let Hk−1 ⊂ y−1(ck−1), such that

|Hk−1| =
nk−1(y)

log2 n
= h.(5.40)

Then 1− p(ỹ;σ) is at least

Pr
(
∪a∈[n]∩y−1(ck−1)[g(y(a))− g(y) > 0]

)
≥ Pr

(
maxa∈[n]∩y−1(ck−1)σ〈W,K(y(a))−K(y)〉 > nk(y) + nk−1(y)− 1

)
≥ Pr

(
maxa∈Hk−1

σ〈W,K(y(a))−K(y)〉 > nk(y) + nk−1(y)− 1
)

Let (X ,Y,Z) be a partition of [n]2 defined by

X = {α = (α1, α2) ∈ [n]2, {α1, α2} ∩ [Hk−1] = ∅}
Y = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hk−1]| = 1}
Z = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hk−1]| = 2}

For η ∈ {X ,Y,Z}, define the n× n matrix Wη from the entries of W as follows

Wη(i, j) =

{
0 if (i, j) /∈ η
W(i, j), if (i, j) ∈ η

For each a ∈ Hk−1, let

Xa = 〈WX ,K(y(a))−K(y)〉
Ya = 〈WY ,K(y(a))−K(y)〉
Za = 〈WZ ,K(y(a))−K(y)〉
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Explicit computations show that

Ki,j(y
(a))−Ki,j(y) =



−1 if i = a, and j ∈ y−1(ck)

1 if i = a, and j ∈ y−1(ck−1), j 6= a

−1 if j = a, and i ∈ y−1(ck)

1 if j = a, and i ∈ y−1(ck−1), i 6= a

0 otherwise.

Claim 5.9. The followings are true:

(1) Xa = 0 for a ∈ Hk−1.

(2) For each a ∈ Hk−1, the variables Ya and Za are independent.

Proof. It is straightforward to check (1). (2) holds because Y ∩ Z = ∅. �

For s ∈ Hk−1, let Ys ⊆ Y be defined by

Ys = {α = (α1, α2) ∈ Y : α1 = s, or α2 = s}.

Note that for s1, s2 ∈ Hk−1 and s1 6= s2, Ys1 ∩ Ys2 = ∅. Moreover, Y = ∪s∈Hk−1
Ys.

Therefore

Ya =
∑

s∈Hk−1

〈WYs ,K(y(a))−K(y)〉

Note also that 〈WYs ,K(y(a))−K(y)〉 = 0, if s 6= a. Hence

Ya =
∑
α∈Ya

[W(α)] · {[K(y(a))−K(y)](α)}

Note that for α ∈ Ya,

[K(y(a))−K(y)](α) =


−1 if {α1, α2} ∩ [y−1(ck)] = 1

1 if {α1, α2} ∩ [y−1(ck−1)] = 2

0 else.

So,∑
α∈Ya

[W(α)] · {[K(y(a))−K(y)](α)} =
∑

α∈Ya;{α1,α2}∩[y−1(ck)]=2

[W(α)]−
∑

α∈Ya;{α1,α2}∩[y−1(ck)]=1

[W(α)]

{Ys}s∈Hk−1
is a collection of independent centered Gaussian random variables. Moreover,

the variance of Ys is equal to 2(nk(y) + nk−1(y)− h) independent of the choice of s.

By the claim, we obtain

〈W,K(y(a))−K(y)〉 = Ya + Za

Moreover,

max
a∈Hk−1

Ya + Za ≥ max
a∈Hk−1

Ya − max
a∈Hk−1

(−Za)
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By Lemma 3.9 about the tail bound result of the maximum of Gaussian random variables,

if (3.22) holds with N replaced by h, the event

E∗1 :=

{
max
a∈Hk−1

Ya ≥ (1− ε)
√

2 log h · 2 (nk(y) + nk−1(y)− h)

}
has probability at least 1− e−hε ; and the event

E∗2 :=

{
max
a∈Hk−1

Za ≤ (1 + ε)
√

2 log h · max
a∈Hk−1

Var(Za)

}

has probability 1− h−ε.
Note that

〈K(y(a)),K(y(a))−K(y)〉 = −
∑
i,j∈[k]

[ti,j(y, y
(a))]2 +

∑
i∈[k]

[ni(y)]2(5.41)

= 2nk−1(y)− 2

Moreover, by (5.39) and (5.41)

VarZa = ‖K(y(a))−K(y)‖2F −Var(Ya)
= 2 [nk−1(y) + nk(y)]− 2− 2 (nk−1(y) + nk(y)− h)

= 2h− 2

Let

E∗ :=

{
max
a∈Hk−1

Ya + Za ≥

(
1− ε− (1 + ε)

√
h− 1

nk(y) + nk−1(y)− h

)√
4 log h(nk(y) + nk−1(y)− h)

}
Then E∗1 ∩ E∗2 ⊆ E∗. Moreover, by (5.40) and (5.36) we have(

1− ε− (1 + ε)

√
h− 1

nk(y) + nk−1(y)− h

)√
4 log h(nk(y) + nk−1(y)− h)

≥ 2

(
1− ε− 1 + ε

log n

)√
β log n (nk(y) + nk−1(y))

√(
1− 1

log2 n

)(
1− 2 log log n

β log n

)
Let Ẽ∗ be the event defined by

Ẽ∗ :=

{
max
a∈Hk−1

Ya + Za ≥ 2

(
1− ε− 1 + ε

log n

)√
β log n (nk(y) + nk−1(y))

√(
1− 1

log2 n

)(
1− 2 log log n

β log n

)}
.

Then E∗ ⊆ Ẽ∗.
Let ε be given as in (6.27), then when n is sufficiently large (3.22) holds with N replaced

by h. When (5.37) and (5.38) holds,

Pr
(

maxa∈Hk−1
σ〈W,K(y(a))−K(y)〉 > nk(y) + nk−1(y)− 1

)
≥ Pr(Ẽ∗) ≥ Pr(E∗),
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as n is sufficiently large. Moreover, we have

Pr(E∗) ≥ Pr(E∗1 ∩ E∗2)

≥ 1− Pr(Ec1)− Pr(Ec2)

≥ 1− log n,

when n is sufficiently large. Then the proposition follows.

�

6. Proof of Theorem 2.2 when the number of vertices in each color is fixed

in the sample space

We now discuss the MLE in Theorem 2.2 when the number of vertices of each color

in the sample space is fixed to be the same as the true value. Let y ∈ Ωn1,...,nk be the

unknown true color assignment mapping. Let K(y) be defined as in (2.8), and let R be

defined as in (2.9). For given sample R, let y be defined as in (2.11).

Given a sample R, the goal is to find the exact division of [n] into groups of vertices such

that all the vertices in the same group have the same color under the true color assignment

mapping y. Note that for all x ∈ Ωn1,...,nk ,

‖K(x)‖2F = 2
∑

1≤i<j≤k
ninj ,

which depends only on n1, . . . , nk, but is independent of x. Then we have

y = argmaxx∈Ωn1,...,nk
〈K(x),R〉

We define an equivalence relation on Ωn1,...,nk as follows:

Definition 6.1. For y ∈ Ωn1,...,nk , let C∗(y) consist of all the x ∈ Ωn1,...,nk such that x

can be obtained from y by a permutation of colors. More precisely, x ∈ C∗(y) ⊂ Ωn1,...,nk

if and only if the following condition holds

• for i, j ∈ [n], y(i) = y(j) if and only if x(i) = x(j).

We define an equivalence relation on Ωn1,...,nk as follows: we say x, z ∈ Ωn1,...,nk are

equivalent if and only if x ∈ C∗(z). Let Ωn1,...,nk be the set of all the equivalence classes in

Ωn1,...,nk .

It is not hard to check that for each x ∈ Ωn1,...,nk , C∗(x) = C(x)∩Ωn1,...,nk , where C(x)

is defined as in Definition 5.1. Moreover, for x, z ∈ Ωn1,...,nk , x ∈ C∗(z) if and only if there

exists a permutation ω of [k], such that

x = ω(z)

and for any i ∈ [k],

|z−1(i)| = |z−1(ω(i))|.

Let

p(y, σ) = Pr(y ∈ C∗(y)),(6.1)
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where y ∈ Ωn1,...,nk is the true color assignment function.

For each x ∈ Ωn1,...,nk , define

h(x) = 〈K(x),R〉(6.2)

Lemma 6.2. Let y ∈ Ωn1,...,nk be the true color assignment mapping. If x, z ∈ Ωn1,...,nk is

such that x ∈ C∗(z), then

K(x) = K(z);(6.3)

and

h(x) = h(z).(6.4)

Proof. From (6.2) we see that (6.4) follows from (6.3). Recall that Ki,j(x) = 1 if and only

if x(i) = x(j); if x(i) 6= x(j), Ki,j(x) = 0. Since x and z are equivalent x(i) = x(j) if and

only if z(i) = z(j), therefore K(x) = K(z). �

Then

p(y, σ) = Pr

(
h(y) > max

x∈Ωn1,...,nk\C∗(y)
h(x)

)
Note that

h(x)− h(y) = 〈K(y),K(x)−K(y)〉+ σ〈W,K(x)−K(y)〉.

The expression above shows that h(x) − h(y) is a Gaussian random variable with mean

〈K(y),K(x)−K(y)〉 and variance σ2‖K(x)−K(y)‖2F .

For i, j ∈ [k], x, y ∈ Ωn1,...,nk , let Si,j(x, y) be defined as in (3.2). Let ti,j(x, y) =

|Si,j(x, y)|. Let

U(x, y) := −E[h(x)− h(y)] = 〈K(y),K(y)−K(x)〉;

Then by (5.2) we have

U(x, y) =
∑
i∈[k]

[ni]
2 −

∑
i,j∈[k]

[ti,j(x, y)]2(6.5)

and

‖K(x)−K(y)‖2F = 2U(x, y).

For x ∈ Ωn1,...,nk \ C∗(y)

Pr (h(x)− h(y) > 0) = Prξ∼N (0,1)

(
ξ ≥

√
U(x, y)√

2σ

)

Using the standard Gaussian tail bound Prξ∈N (0,1)(ξ > x) < e−
1
2
x2 , we obtain

Pr (h(x)− h(y) > 0) ≤ e−
U(x,y)

4σ2
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Then

1− p(y;σ) ≤
∑

x∈Ω\C∗(y)

Pr(h(x)− h(y) > 0)(6.6)

≤
∑

x∈Ω\C∗(y)

e−
U(x,y)

4σ2

Lemma 6.3. For any x, y ∈ Ωn1,...,nk , U(x, y) ≥ 0, where the equality holds if and only if

x ∈ C∗(y).

Proof. Note that

U(x, y) =
1

2
L(x, y)

∣∣∣∣
x,y∈Ωn1,...,nk

.(6.7)

Then the lemma follows from Lemma 5.4. �

Lemma 6.4. Assume x, z1, z2 ∈ Ωn1,...,nk . Assume z1 ∈ C∗(z2). Then

U(x, z1) = U(x, z2).

Proof. The lemma follows from (5.11) and (6.7). �

Lemma 6.5. Let B̃ and B̃ε be defined as in (5.14) and (5.15), respectively. Let Rc be

defined as in (4.6). Let x, y ∈ Ωn1,...,nk . Assume (4.7) and (5.16) hold. Then

U(x, y) ≥ cεn2

2k

Proof. The lemma follows from (6.7) and Lemma 5.5. �

Lemma 6.6. Let y ∈ Ωn1,...,nk be the true color assignment mapping. Let Rc be defined

in (4.6). Assume (4.7) holds. Let x ∈ Ωn1,...,nk For i ∈ [k], let w(i) ∈ [k] be defined as in

(5.18). Then

(1) when ε ∈
(
0, ck

)
and (t1,1(x, y), . . . , tk,k(x, y)) ∈ B̃ε, w is a bijection from [k] to [k].

(2) Assume there exist i, j ∈ [k], such that ni 6= nj. If

ε < min
i,j∈[k]:ni 6=nj

∣∣∣∣ni − njn

∣∣∣∣(6.8)

Then for any i ∈ [k],

ni = |y−1(i)| = |y−1(w(i))| = nw(i).(6.9)

Proof. Part (1) of the lemma is a special case of Lemma 5.6 when x ∈ Ωn1,...,nk . Now we

prove Part (2) of the lemma. We shall prove by contradiction. Assume (6.9) does not hold,

then there exists i0 ∈ [k], such that

ni > nw(i).(6.10)

By (5.18), we obtain

nwi ≥ tw(i),i(x, y) > ni − εn
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Hence we have

ε >
ni − nw(i)

n

But this is a contradiction to (6.8) and (6.10). The contradiction implies Part (2) of the

lemma. �

We have the following proposition

Proposition 6.7. Let Rc be defined as in (4.6). Let y ∈ Ωn1,...,nk be the true color

assignment mapping satisfying (4.7), where n1 ≥ n2 ≥ . . . ≥ nk. Here c, k may depend on

n. Assume

lim
n→∞

c

k(nk + nk−1)
= 0;(6.11)

lim
k→∞

log k

log n
= 0;(6.12)

and

lim
n→∞

cnmin
{
c
k ,mini,j∈[k],ni 6=nj

∣∣∣ni−njn

∣∣∣}
(nk−1 + nk)

≥ α > 0,(6.13)

where α > 0 is a constant independent of n; and mini,j∈[k],ni 6=nj

∣∣∣ni−njn

∣∣∣ =∞ if ni = nj for

all i, j ∈ [k]. If there exists a constant δ > 0 independent of n, such that

σ2 <
(1− δ)[nk−1 + nk]

4 log n
(6.14)

then

lim
n→∞

p(y;σ) = 1.

Proof. Let

Γ :=
∑

x∈Ωn1,...,nk\C∗(y)

e−
U(x,y)

4σ2 .

By (6.6), it suffices to show that limn→∞ Γ = 0.

Let 0 < ε < min
{
c
k ,mini,j∈[k],ni 6=nj

∣∣∣ni−njn

∣∣∣}. Then

Γ ≤ Γ1 + Γ2;

where

Γ1 =
∑

C∗(x)∈Ωn1,...,nk :(t1,1(x,y),...,tk,k(x,y))∈[B̃\B̃ε],C(x) 6=C(y)

e
−U(x,y)

4σ2

and

Γ2 =
∑

C∗(x)∈Ωn1,...,nk :(t1,1(x,y),...,tk,k(x,y))∈B̃ε,C(x)6=C(y)

e
−U(x,y)

4σ2 .(6.15)
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By Lemma 6.5, when (6.14) holds, we have

Γ1 ≤ kne
− cεn2 logn

2(1−δ)k(nk−1+nk)

When

ε =
1

2
min

{
c

k
, min
i,j∈[k],ni 6=nj

∣∣∣∣ni − njn

∣∣∣∣} ,
we have

Γ1 ≤ e
n

log k−
cn lognmin

{
c
k
,mini,j∈[k],ni 6=nj

∣∣∣∣ni−njn

∣∣∣∣}
4(1−δ)(nk−1+nk)


Then by (6.12) and (6.13) we obtain that

0 ≤ lim
n→∞

Γ1 ≤ lim
n→∞

e−n log k = 0.(6.16)

since k ≥ 2.

Now let us consider Γ2. Recall that y ∈ Ωn1,...,nk is the true color assignment mapping.

Let w be the bijection from [k] to [k] as defined in (5.18). Let y∗ ∈ Ω be defined by

y∗(z) = w(y(z)), ∀z ∈ [n].

Then y∗ ∈ C(y). By Part (2) of Lemma 6.6, we obtain that for i ∈ [k]∣∣[y∗]−1(i)
∣∣ =

∣∣y−1(w−1(i))
∣∣ =

∣∣y−1(i)
∣∣ ;

therefore y∗ ∈ Ωn1,...,nk . Moreover, x and y∗ satisfies

ti,i(x, y
∗) ≥ ni(y∗)− nε, ∀i ∈ [k].(6.17)

If x 6= y∗, by Lemma 3.3, there exists an l-cycle (i1, . . . , il) for (x, y∗) with 2 ≤ l ≤ k.

Then for each 2 ≤ s ≤ (l + 1), choose an arbitrary vertex us in Sis−1,is(x, y), and let

y1(us) = cis−1 , where il+1 := i1. For any vertex z ∈ [n] \ {u2, . . . , ul+1}, let y1(z) = y∗(z).

Note that y1 ∈ Ωn1,...,nk . More precisely, for 1 ≤ s ≤ l, we have

tis,is(x, y
∗) + 1 = tis,is(x, y1);

tis,is+1(x, y∗)− 1 = tis,is+1(x, y1)

and

ta,b(x, y
∗) = ta,b(x, y1), ∀(a, b) /∈ {(is, is), (is, is+1)}ls=1.

From (6.5) and Lemma 6.4 we obtain

U(x, y1)− U(x, y) = U(x, y1)− U(x, y∗)

= −
∑
i,j∈[k]

[ti,j(x, y1)]2 +
∑
i,j∈[k]

[ti,j(x, y
∗)]2

= 2

l∑
s=1

[tis,is+1(x, y∗)− tis,is(x, y∗)].
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When (t1,1(x, y), . . . , tk,k(x, y)) ∈ B̃ε, we obtain

U(x, y1)− U(x, y) ≤ 2
l∑

s=1

[2nε− nis(y∗)] ≤ −l (nk + nk−1 − 4nε)

Therefore

e−
U(x,y)

4σ2 ≤ e−
U(x,y1)

4σ2 e−
l(nk+nk−1−4nε)

4σ2 .(6.18)

If y1 6= x, we find an l2-cycle (2 ≤ l2 ≤ k) for (x, y1), change colors along the l2-cycle

as above, and obtain another cycle assignment mapping y2 ∈ Ωn1,...,nk , and so on. Let

y0 := y, and note that for each r ≥ 1, if yr is obtained from yr−1 by changing colors along

an lr cycle, we have

DΩ(x, yr) = DΩ(x, yr−1)− lr

Therefore finally we can obtain x from y by changing colors along at most
⌊
n
2

⌋
cycles.

Using similar arguments as those used to derive (6.18), we obtain that for each r

e−
U(x,yr−1)

4σ2 ≤ e−
U(x,yr)

4σ2 e−
lr(nk+nk−1−4nε)

4σ2 .

Therefore if ys = x for some 1 ≤ s ≤
⌊
n
2

⌋
, we have

e−
U(x,y)

4σ2 ≤ e−
U(x,ys)

4σ2 e−
(nk+nk−1−4nε)(

∑
i∈[s] li)

4σ2 .

By Lemma 6.3, we have U(x, ys) = U(x, x) = 0, hence

e−
U(x,y)

4σ2 ≤
∏
i∈[s]

e−
(nk+nk−1−4nε)li

4σ2 .

Note also that for any r1 6= r2, in the process of obtaining yr1 from yr1−1 and the process

of obtaining yr2 from yr2−1, we change colors on disjoint sets of vertices. Hence the order

of these steps of changing colors along cycles does not affect the final color assignment

mapping we obtain. From (6.15) we obtain

Γ2 ≤
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
mll(nk+nk−1−4nε)

4σ2

− 1(6.19)

On the right hand side of (6.19), when expanding the product, each summand has the form[
(nk)2m2e−

2m2(nk+nk−1−4nε)

4σ2

]
·
[
(nk)3m3e−

3m3(nk+nk−1−4nε)

4σ2

]
· . . . ·

[
(nk)kmke−

kmk(nk+nk−1−4nε)

4σ2

]
where the factor

[
(nk)2m2e−

2m2(nk+nk−1−4nε)

4σ2

]
represents that we changed along 2-cycles m2

times, the factor

[
(nk)3m3e−

3m3(nk+nk−1−4nε)

4σ2

]
represents that we changed along 3-cycles

m3 times, and so on. Moreover, each time we changed along an l-cycle, we need to first

determine the l different colors involved in the l-cycle, and there are at most kl different
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l-cycles; we then need to chose l vertices to change colors, and there are at most nl choices.

It is straightforward to check that if σ satisfies (6.14), then

nke−
nk+nk−1−4ε

4σ2 ≤ e
log k− logn

1−δ

(
δ− 4ε

nk+nk−1

)
.

When ε < c
k and (6.11) holds, we obtain

e
log k− logn

1−δ

(
δ− 4ε

nk+nk−1

)
≤ e

log k− logn
1−δ

(
δ− 4c

k(nk+nk−1)

)

≤ e
log k− δ logn

2(1−δ)

When (6.12) holds, we obtain

e
log k− δ logn

2(1−δ) ≤ e−
δ logn
4(1−δ) → 0

as n→∞.

Therefore we have
∞∑

ml=0

(nk)mlle−
mll(nk+nk−1−4nε)

4σ2 ≤ 1

1− e
l log k− l logn

1−δ

(
δ− 4ε

nk+nk−1

) ≤ 1

1− e−
δln

4(1−δ)

Let

Σ :=
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
mll(nk+nk−1−4ε)

4σ2

 .

Since log(1 + x) ≤ x for x ≥ 0, we have

0 ≤ log Σ =
k∑
l=2

log

1 +
∞∑

ml=1

(nk)mlle−
mll(nk+nk−1−4nε)

4σ2


≤

k∑
l=2

∞∑
ml=1

(nk)mlle−
mll(nk+nk−1−4nε)

4σ2

≤
k∑
l=2

(
e
− δ logn

4(1−δ)

)l
1−

(
e
− δ logn

4(1−δ)

)l

≤

(
e
− δ logn

4(1−δ)

)2

[
1−

(
e
− δ logn

4(1−δ)

)2
](

1− e−
δ logn
4(1−δ)

) → 0,

as n→∞. Then

0 ≤ lim
n→∞

Γ2 ≤ lim
n→∞

elog Σ − 1 = 0.(6.20)

Then the proposition follows from (6.16) and (6.20). �
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Proposition 6.8. Assume n1 ≥ n2 ≥ nk, and y ∈ Ωn1,...,nk is the true color assignment

mapping. Suppose that

log nk
log n

≥ β > 0, ∀ n,(6.21)

where β is a constant independent of n.

Assume

δ =

(
1 +

4

β

)
log logn

log n
,(6.22)

and

σ2 >
(1 + δ)[nk(y) + nk−1(y)]

4β log n
,(6.23)

then

lim
n→∞

p(y;σ) = 0.

Proof. For y ∈ Ωn1,...,nk , a, b ∈ [n] such that ck = y(a) 6= y(b) = ck−1. Let y(ab) ∈ Ωn1,...,nk

be the coloring of vertices defined by

y(ab)(i) =


y(i) if i ∈ [n] \ {a, b}
ck−1 if i = a

ck if i = b

(6.24)

Then

tk−1,k(y
(ab), y)− 1 = tk−1,k(y, y) = 0

tk−1,k−1(y(ab), y) + 1 = tk−1,k−1(y, y) = nk−1

tk,k−1(y(ab), y)− 1 = tk,k−1(y, y) = 0

tk,k(y
(ab), y) + 1 = tk,k(y, y) = nk.

and

ti,j(y
(ab), y) = ti,j(y), ∀ (i, j) ∈

(
[k]2 \ {(k, k), (k, k − 1), (k − 1, k), (k − 1, k − 1)}

)
Note that

1− p(y;σ) ≥ Pr
(
∪a,b∈[n],ck=y(a)6=y(b)=ck−1

[h(y(ab))− h(y) > 0]
)
,

since any of the event [h(y(ab))− h(y) > 0] implies y 6= y. By (5.2) we obtain

h(y(ab))− h(y) = 〈K(y),K(y(ab))−K(y)〉+ σ〈W,K(y(ab))−K(y)〉

=
∑
i,j∈[k]

[ti,j(y
(ab), y)]2 −

∑
i∈[k]

[ni]
2 + σ〈W,K(y(ab))−K(y)〉

= 4− 2nk − 2nk−1 + σ〈W,K(y(ab))−K(y)〉.
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So 1− p(y;σ) is at least

Pr
(
∪a,b∈[n],ck=y(a) 6=y(b)=ck−1

[h(y(ab))− h(y) > 0]
)

≥ Pr
(

maxa,b∈[n],ck=y(a)6=y(b)=ck−1
σ〈W,K(y(ab))−K(y)〉 > 2(nk + nk−1 − 2)

)
For i ∈ {k − 1, k}, let Hi ⊂ y−1(ci) such that

|Hi| =
nk

log2 n
= h.(6.25)

Then

1− p(y;σ) ≥ Pr
(

maxa∈Hk−1,b∈Hkσ〈W,K(y(ab))−K(y)〉 > 2(nk + nk−1 − 2)
)

Let (X ,Y,Z) be a partition of [n]2 defined by

X = {α = (α1, α2) ∈ [n]2, {α1, α2} ∩ [Hk−1 ∪Hk] = ∅}
Y = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hk−1 ∪Hk]| = 1}
Z = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [Hk−1 ∪Hk]| = 2}

For η ∈ {X ,Y,Z}, define the n× n matrix Wη from the entries of W as follows

Wη(i, j) =

{
0 if (i, j) /∈ η
W(i, j), if (i, j) ∈ η

For each a ∈ Hk and b ∈ Hk−1, let

Xab = 〈WX ,K(y(ab))−K(y)〉
Yab = 〈WY ,K(y(ab))−K(y)〉
Zab = 〈WZ ,K(y(ab))−K(y)〉

Lemma 6.9. The followings are true:

(1) Xab = 0 for a ∈ Hk and b ∈ Hk−1.

(2) For each a ∈ Hk and b ∈ Hk−1, the variables Yab and Zab are independent.

(3) Each Yab can be decomposed into Ya+Yb where {Ya}a∈Hk∪{Yb}b∈Hk−1
is a collection

of i.i.d. Gaussian random variables.
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Proof. Note that for i, j ∈ [n],

Ki,j(y
(ab))−Ki,j(y) =



1 if i = a, j ∈ y−1(ck), and j 6= a.

−1 if i = a, j ∈ y−1(ck−1)

−1 if i = b, j ∈ y−1(ck)

1 if i = b, j ∈ y−1(ck−1) and j 6= b

1 if j = a, i ∈ y−1(ck), and i 6= a.

−1 if j = a, i ∈ y−1(ck−1)

−1 if j = b, i ∈ y−1(ck)

1 if j = b, i ∈ y−1(ck−1) and i 6= b

0 otherwise.

(6.26)

It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.
For s ∈ Hk−1 ∪Hk, let Ys ⊆ Y be defined by

Ys = {α = (α1, α2) ∈ Y : α1 = s, or α2 = s}.

Note that for s1, s2 ∈ Hk−1∪Hk and s1 6= s2, Ys1 ∩Ys2 = ∅. Moreover, Y = ∪s∈Hk−1∪HkYs.
Therefore

Yab =
∑

s∈Hk−1∪Hk

〈WYs ,K(y(ab))−K(y)〉

Note also that 〈WYs ,K(y(ab))−K(y)〉 = 0, if s /∈ {a, b}. Hence

Yab =
∑

α∈Ya∪Yb

[W(α)] · {[K(y(ab))−K(y)](α)}

From (6.26) we obtain that for α = (α1, α2) ∈ Ya and α1 6= α2,

[K(y(ab))−K(y)](α) =

{
1 if |{α1, α2} ∩ y−1(ck)| = 2.

−1 if |{α1, α2} ∩ y−1(ck−1)| = 1.

So, we can define

Ya :=
∑
α∈Ya

[W(α)] · {[K(y(ab))−K(y)](α)}

=
∑

α∈Ya;|{α1,α2}∩y−1(ck)|=2

[W(α)]−
∑

α∈Ya;|{α1,α2}∩y−1(ck−1)|=1

[W(α)]

Similarly, define

Yb :=
∑

α∈Yb;|{α1,α2}∩y−1(ck−1)|=2

[W(α)]−
∑

α∈Yb;|{α1,α2}∩y−1(ck)|=1

[W(α)]

Then Yab = Ya + Yb and {Ys}s∈Hk−1∪Hk is a collection of independent Gaussian random

variables. Moreover, the variance of Ys is 2(nk + nk−1 − 2h) independent of the choice of

s. �
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By the Lemma 6.9, we obtain

〈W,K(y(ab))−K(y)〉 = Ya + Yb + Zab

Moreover,

max
a∈Hk,b∈Hk−1

Ya + Yb + Zab ≥ max
a∈Hk,b∈Hk−1

(Ya + Yb)− max
a∈Hk,b∈Hk−1

(−Zab)

= max
a∈Hk

Ya + max
b∈Hk−1

Yb − max
a∈Hk,b∈Hk−1

(−Zab)

By Lemma 3.9 we obtain that when ε, h satisfy (3.22) with N replaced by h, each one

of the following two events

F ∗1 :=

{
max
a∈Hk

Ya ≥ (1− ε)
√

2 log h · 2(nk + nk−1 − 2h)

}
F ∗2 :=

{
max
b∈Hk−1

Yb ≥ (1− ε)
√

2 log h · 2(nk + nk−1 − 2h)

}
has probability at least 1− e−hε . Moreover, the event

F ∗3 :=

{
max

a∈Hk,b∈Hk−1

Zab ≤ (1 + ε)
√

4 log h ·max Var(Zab)

}
occurs with probability at least 1− h−2ε. Then by (6.26) we have

VarZab = ‖K(y(ab))−K(y)‖2F −Var(Ya)−Var(Yb)

= 4(nk + nk−1)− 6− 4 (nk + nk−1 − 2h)

= 8h− 6

Hence the probability of the event

F ∗ :={
max

a∈Hk,b∈Hk−1

〈W,K(y(ab))−K(y)〉 ≥ 4(1− ε)
√

log h(nk + nk−1 − 2h)− 4(1 + ε)

√(
2h− 3

2

)
log h

}
is at least

Pr(F ∗1 ∩ F ∗2 ∩ F ∗3 ) = 1− Pr([F ∗1 ]c ∪ [F ∗2 ]c ∪ [F ∗3 ]c)

≥ 1− Pr([F ∗1 ]c)− Pr([F ∗2 ]c)− Pr([F ∗3 ]c)

≥ 1− 2e−h
ε − h−2ε.

Moreover, from (6.25) we obtain

4(1− ε)
√

log h(nk + nk−1 − 2h)− 4(1 + ε)

√(
2h− 3

2

)
log h

= 4
√

(nk + nk−1 − 2h) log h

1− ε− (1 + ε)

√
2h− 3

2

nk + nk−1 − 2h


≥ 4

√
(nk + nk−1 − 2h) log h

[
1− ε− 2

log n

]
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By (6.21) we have

4
√

(nk + nk−1 − 2h) log h

[
1− ε− 2

log n

]

≥ 4

√
β log n(nk + nk−1 − 2h)

(
1− 2 log log n

β log n

)[
1− ε− 2

log n

]
Let

ε =
log log n

β log n
;(6.27)

then when n is sufficiently large, (3.22) holds with N replaced by h. Define an event

F̃ ∗ : =

{
max

a∈Hk,b∈Hk−1

〈W,K(y(ab))−K(y)〉

≥ 4

√
β log n(nk + nk−1 − 2h)

(
1− 2 log log n

β log n

)[
1− log log n

β log n
− 2

log n

]}
Then F ∗ ⊆ F̃ ∗

When (6.22) and (6.23) hold, we have

Pr
(

maxa,b∈[n],y(a)6=y(b)σ〈W,G(y(ab))−G(y)〉 > 2(nk + nk−1 − 2)
)

≥ Pr(F̃ ∗) ≥ Pr(F ) ≥ 1− 1

log n
,

as n is sufficiently large. Then the proposition follows.

�

7. Complex Unitary Matrix with Gaussian Perturbation

Now we consider the community detection problem when the observation is a complex

unitary matrix plus a multiple of a GUE or GOE matrix. In the former case, we prove a

threshold with respect the intensity σ of the GUE perturbation for the exact recovery of

the MLE. In the latter case, we develop a “complex version” of SDP algorithm for efficient

recovery, and explicitly prove the region of the intensity of the GOE perturbation for the

exact recovery of the SDP.

7.1. GUE perturbation. In this section, we prove Theorem 2.4. Recall that y ∈ ΘA is

the true color assignment function satisfying Assumption 2.3. For x ∈ ΘA, define

r(x) = <〈U,P(x)〉.

Then

r(x)− r(y) = < [〈P(y),P(x)−P(y)〉+ σ〈Wc,P(x)−P(y)〉](7.1)

which is a real Gaussian random variable with mean <[〈P(y),P(x)−P(y)〉], and variance

4σ2
∑
i<j

{1−<[x(i)x(j)y(i)y(j)]}.
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Moreover,

<〈P(x),P(y)〉 = n+ 2
∑
i<j

<[x(i)x(j)y(i)y(j)]

Hence

<[〈P(y),P(x)−P(y)〉] = −2
∑
i<j

[1−<[x(i)x(j)y(i)y(j)]]

Let

J(x, y) = −E[r(x)− r(y)] = 2
∑
i<j

[1−<[x(i)x(j)y(i)y(j)]](7.2)

Therefore for x ∈ ΘA

Pr(r(x)− r(y) > 0) = Prξ∈N (0,1)

(
ξ >

√
J(x, y)√

2σ

)
≤ e−

J(x,y)

4σ2

Lemma 7.1. For any x, y ∈ ΘA, J(x, y) ≥ 0; J(x, y) = 0 if and only if there exists a fixed

angle α, such that eiαx = y.

Proof. First of all, J(x, y) ≥ 0 follows from the fact that
∣∣∣x(i)x(j)y(i)y(j)

∣∣∣ = 1. Moreover,

J(x, y) = 0 if and only if for any 1 ≤ i < j ≤ n, x(i)x(j)y(i)y(j) = 1. Then the lemma

follows. �

Then

Lemma 7.2. If x, z ∈ ΘA such that x ∈ θ(z), then

(1) P(x) = P(z).

(2) r(x) = r(z).

Proof. Note that if x ∈ θ(z), then P(x) = P(z). Then r(x) = r(z) follows from (7.1). �

Lemma 7.3. If x, y, y′ ∈ ΘA such that y ∈ θ(y′), then

J(x, y) = J(x, y′).

Proof. The lemma follows from (7.2) and Part (2) of Lemma 7.2. �

By Lemmas 7.1 and 7.2, we obtain

p(yA;σ) = Pr

[
r(yA) > max

x∈ΘA,x/∈θ(y)
r(x)

]
Hence

1− p(yA;σ) ≤
∑

θ(x)⊆[ΘA\θ(y)]

e−
J(x,y)

4σ2(7.3)

For i, j ∈ [k], let

Si,j(x, y) = {1 ≤ l ≤ n : x(l) = eidi , y(l) = eidj};(7.4)

i.e., Si,j(x, y) consists of all the vertices which have color eidi in x and color eidj in y.
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Let ti,j(x, y) = |Si,j(x, y)|. Again ti,j(x, y) satisfies (4.2) and (4.3). We shall now define

a distance function on Θ.

Definition 7.4. Let DΘ : Θ × Θ → N be the distance function on Θ defined as follows:

for x, z ∈ Θ,

DΘ(x, z) =
∑

i,j∈[k],i 6=j

ti,j(x, z).

From (7.2), we obtain

J(x, y) =
∑

i,j,p,q∈[k]

ti,j(x, y)tp,q(x, y)[1− cos(−di + dp + dj − dq)]

=
∑

i,j,p,q∈[k]

ti,j(x, y)tp,q(x, y)

[
1− cos

(
2π(p+ j − q − i)

k

)]

When p, q, i, j ∈ [k], p+ j − q − i ∈ [−(2k − 2), 2k − 2]; hence cos
(

2π(p+j−q−i)
k

)
= 1 if and

only if p+ j − q − i ∈ {−k, 0, k}. Therefore,

J(x, y)(7.5)

=
∑

i,j,p,q∈[k],p+j−q−i/∈{−k,0,k}

ti,j(x, y)tp,q(x, y)

[
1− cos

(
2π(p+ j − q − i)

k

)]
By Assumption 2.3,

n1(x) = n2(x) = . . . = nk(x) = n1(y) = n2(y) = . . . = nk(y) =
n

k

Let D̂ be the set defined by

D̂ =

(t1,1, . . . , tk,k) ∈
{

0, 1, . . .
n

k

}k2
:
∑
j∈[k]

ti,j =
n

k
,
∑
i∈[k]

ti,j =
n

k


For ε > 0, let

D̂ε =

(t1,1, . . . , tk,k) ∈ D̂ :
∑

i,j,p,q∈[k],p+j−q−i/∈{−k,0,k}

ti,jtp,q ≤ εn2

(7.6)

Then we have ∑
θ(x)⊆[ΘA\θ(y)]

e−
J(x,y)

4σ2 ≤ Î1 + Î2(7.7)

where

Î1 =
∑

θ(x)⊆ΘA\θ(y):(t1,1,...,tk,k)∈D\D̂ε

e
−J(x,y)

4σ2 .

and

Î2 =
∑

θ(x)⊆ΘA\θ(y):(t1,1,...,tk,k)∈D̂ε

e
−J(x,y)

4σ2 .(7.8)
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Lemma 7.5. Assume

lim
n→∞

εn2

k2
=∞.

Then we have

lim
n→∞

Î1 = 0.

Proof. From the definition of the domains D̂ and D̂ε, as well as the expression (7.5), we

obtain that when (u1,1,, . . . , uk,k) ∈ D̂ \ D̂ε

J(x, y) ≥ εn2

[
1− cos

(
2π

k

)]
.

Then the lemma follows. �

From (7.5), we obtain

J(x, y) =

b k
2
c∑

u=1

∑
{i,j,p,q∈[k], ((p+j−q−i) mod k)∈{u,k−u}}

ti,j(x, y)tp,q(x, y)

[
1− cos

(
2uπ

k

)]

Lemma 7.6. For each x ∈ ΘA satisfying (t1,1(x, y), . . . , tk,k(x, y)) ∈ D̂ε, there exists y′ ∈
θ(y) such that

1

n

∑
i,j∈[k],i 6=j

ti,j(x, y
′) < (k − 1)

√
2ε(7.9)

In particular, this implies that

1

n

∑
i∈[k]

ti,i(x, y
′) > 1− (k − 1)

√
2ε;(7.10)

and for each i ∈ [k],

1

n
ti,i(x, y

′) >
1

k
− (k − 1)

√
2ε.(7.11)

Proof. From the definition (7.6) and the fact that
∑

i,j∈[k] ti,j(x, y) = n, we obtain∑
i,j,p,q∈[k],p+j−q−i∈{−k,0,k}

ti,j(x, y)tp,q(x, y) ≥ (1− ε)n2;

which is the same as the following inequality

k−1∑
l=0

 ∑
[i,j∈[k],(i−j) mod k=l]

ti,j(x, y)

2

≥ (1− ε)n2(7.12)

Let a =
√

2ε. Again using the fact that
∑

i,j∈[k] ti,j(x, y) = n; if there exists l1, l2 ∈
{0, . . . , k − 1} and l1 6= l2 and

min

 ∑
[i,j∈[k],(i−j) mod k=l1]

ti,j(x, y),
∑

[i,j∈[k],(i−j) mod k=l2]

ti,j(x, y)

 ≥ an;
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then

k−1∑
l=0

 ∑
[i,j∈[k],(i−j) mod k=l]

ti,j(x, y)

2

≤

k−1∑
l=0

∑
[i,j∈[k],(i−j) mod k=l]

ti,j(x, y)

2

−

 ∑
[i,j∈[k],(i−j) mod k=l1]

ti,j(x, y)

 ·
 ∑

[i,j∈[k],(i−j) mod k=l2]

ti,j(x, y)


≤ n2 − a2n2 = (1− 2ε)n2

which is a contradiction to (7.12). Hence there exists at most one l0 ∈ {0, 1, . . . , k − 1},
such that ∑

[i,j∈[k],(i−j) mod k=l0]

ti,j(x, y) ≥ an.

Then for and l ∈ {0, 1, . . . , k − 1} \ {l0}∑
[i,j∈[k],(i−j) mod k=l]

ti,j(x, y) < an.

Since
∑

i,j∈[k] ti,j(x, y) = n, we have∑
[i,j∈[k],(i−j) mod k=l0]

ti,j(x, y) =
∑
i,j∈[k]

ti,j(x, y)−
∑

[l∈({0,1,...,k−1}\{l0})]

∑
[i,j∈[k],(i−j) mod k=l]

ti,j(x, y)

≥ [1− (k − 1)a]n

Let y′ = e
2l0πi
k y, then (7.9) and (7.10) follows. To obtain (7.11), note that

1

n
ti,i(x, y

′) =
1

n

∑
j∈[k]

ti,j(x, y
′)− 1

n

∑
j∈[k],j 6=i

ti,j(x, y
′) ≥ n

k
− (k − 1)

√
2ε.

Then the lemma follows. �

Proposition 7.7. Let y ∈ ΘA be the true color assignment function satisfying Assumption

2.3. Let k be the total number of colors and n be the total number of vertices. Assume

lim
n→∞

log k

log n
= 0.(7.13)

If there exists δ > 0, such that

σ2 <
(1− δ)

[
n(1− cos 2π

k )
]

2 log n
(7.14)

then

lim
n→∞

Pr(yA ∈ θ(y)) = 1

Proof. For given x ∈ ΘA, such that (t1,1(x, y), . . . , tk,k(x, y)) ∈ D̂ε, and x /∈ θ(y), by Lemma

7.6, let y′ ∈ θ(y) such that (7.9) holds. By Lemma 3.3, there exists an l-cycle for (x, y′)

with 2 ≤ l ≤ k.
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Then for each 2 ≤ s ≤ (l + 1), choose an arbitrary vertex us in Sis−1,is(x, y), and let

y1(us) = eidis−1 , where il+1 := i1. For any vertex z ∈ [n] \ {u2, . . . , ul+1}, let y1(z) = y′(z).

Note that y1 ∈ ΘA. More precisely, for 1 ≤ s ≤ l, we have

tis,is(x, y
′) + 1 = tis,is(x, y1);(7.15)

tis,is+1(x, y′)− 1 = tis,is+1(x, y1)(7.16)

and

ta,b(x, y
′) = ta,b(x, y1), ∀(a, b) /∈ {(is, is), (is, is+1)}ls=1.

Let

∆ := {(is, is), (is, is+1)}ls=1.

From (7.5) and Lemma 7.3 we obtain

J(x, y1)− J(x, y) = J(x, y1)− J(x, y′)

=
∑

i,j,p,q∈[k],p+j−q−i/∈{−k,0,k}

[
ti,j(x, y1)tp,q(x, y1)− ti,j(x, y′)tp,q(x, y′)

](
1− cos

(
2π(p+ j − q − i)

k

))
= B1 +B2 +B3 +B4 +B5 +B6 +B7 +B8.

Here

B1 =
l∑

s=1

∑
p,q∈[k],(p,q)/∈∆

[
tis,is(x, y1)tp,q(x, y1)− tis,is(x, y′)tp,q(x, y′)

](
1− cos

(
2π(p− q)

k

))

B2 =

l∑
s=1

∑
p,q∈[k],(p,q)/∈∆

[
tis,is+1(x, y1)tp,q(x, y1)− tis,is+1(x, y′)tp,q(x, y

′)
](

1− cos

(
2π(p+ is+1 − q − is)

k

))

B3 =
∑

i,j∈[k],i,j /∈∆

l∑
s=1

[
ti,j(x, y1)tis,is(x, y1)− ti,j(x, y′)tis,is(x, y′)

](
1− cos

(
2π(j − i)

k

))
= B1

B4 =
∑

i,j∈[k],i,j /∈∆

l∑
s=1

[
ti,j(x, y1)tis,is+1(x, y1)− ti,j(x, y′)tis,is+1(x, y′)

](
1− cos

(
2π(is + j − is+1 − i)

k

))
= B2

B5 =

l∑
s=1

l∑
r=1

[
tis,is(x, y1)tir,ir(x, y1)− tis,is(x, y′)tir,ir(x, y′)

]
(1− cos 0) = 0

B6 =
l∑

s=1

l∑
r=1

[
tis,is(x, y1)tir,ir+1(x, y1)− tis,is(x, y′)tir,ir+1(x, y′)

](
1− cos

(
2π(ir − ir+1)

k

))

B7 =
l∑

s=1

l∑
r=1

[
tis,is+1(x, y1)tir,ir(x, y1)− tis,is+1(x, y′)tir,ir(x, y

′)
](

1− cos

(
2π(is+1 − is)

k

))
= B6

B8 =

l∑
s=1

l∑
r=1

[
tis,is+1(x, y1)tir,ir+1(x, y1)− tis,is+1(x, y′)tir,ir+1(x, y′)

](
1− cos

(
2π(ir − ir+1 + is+1 − is)

k

))
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By (7.15) and (7.16) we have

B1 = l
∑

p,q∈[k],(p,q)/∈∆

tp,q(x, y
′)

(
1− cos

(
2π(p− q)

k

))
When (t1,1(x, y), . . . , tk,k(x, y)) ∈ D̂ε, by Lemma 7.6 we obtain

0 ≤ B1 ≤ 2l(k − 1)
√

2εn.

Similarly,

B2 = −
l∑

s=1

∑
p,q∈[k],(p,q)/∈∆

tp,q(x, y
′)

(
1− cos

(
2π(p+ is+1 − q − is)

k

))
Then

B2 ≤ −
l∑

s=1

∑
p∈([k]\{i1,...,il})

tp,p(x, y
′)

(
1− cos

(
2π(is+1 − is)

k

))

≤ −(k − l)n
k

l∑
s=1

(
1− cos

(
2π(is+1 − is)

k

))
+ 2l(k − 1)

√
2εn

B6 =

l∑
s=1

l∑
r=1

[
−tis,is(x, y′) + tir,ir+1(x, y′)− 1

](
1− cos

(
2π(ir − ir+1)

k

))

= −l
l∑

r=1

(
1− cos

(
2π(ir − ir+1)

k

))
+ l

l∑
r=1

tir,ir+1(x, y′)

(
1− cos

(
2π(ir − ir+1)

k

))

−
l∑

s=1

tis,is(x, y
′)

l∑
r=1

(
1− cos

(
2π(ir − ir+1)

k

))
By Lemma 7.6 we obtain

B6 ≤ −l
l∑

r=1

(
1− cos

(
2π(ir − ir+1)

k

))
+ 2l(k − 1)

√
2εn

− ln
k

l∑
r=1

(
1− cos

(
2π(ir − ir+1)

k

))
+ 2l(k − 1)

√
2εn

B8 =

l∑
s=1

l∑
r=1

[
−tis,is+1(x, y′)− tir,ir+1(x, y′)− 1

](
1− cos

(
2π(ir − ir+1 + is+1 − is)

k

))
By Lemma 7.6 we obtain

0 ≥ B8 ≥ −4l(k − 1)n
√

2ε− 2l2

Then we have

J(x, y1)− J(x, y) ≤
[
16l(k − 1)

√
2ε− 2l

(
1− cos

2π

k

)]
n.
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Therefore

e−
J(x,y)

4σ2 ≤ e−
J(x,y1)

4σ2 e−
n

4σ2
[2l(1−cos 2π

k )−16l(k−1)
√

2ε].(7.17)

If y1 6= x, we find an l2-cycle (2 ≤ l2 ≤ k) for (x, y1), change colors along the l2-cycle as

above, and obtain another cycle assignment mapping y2 ∈ ΘA, and so on. Let y0 := y, and

note that for each r ≥ 1, if yr is obtained from yr−1 by changing colors along an lr cycle,

we have

DΘ(x, yr) = DΘ(x, yr−1)− lr

Therefore finally we can obtain x from y by changing colors along at most
⌊
n
2

⌋
cycles.

Using similar arguments as those used to derive (7.17), we obtain that for each r

e−
J(x,yr−1)

4σ2 ≤ e−
J(x,yr)

4σ2 e−
n

4σ2
[2lr(1−cos 2π

k )−16lr(k−1)
√

2ε].

Therefore if ys = x for some 1 ≤ s ≤
⌊
n
2

⌋
, we have

e−
J(x,y)

4σ2 ≤ e−
J(x,ys)

4σ2 e−
n

4σ2
[2(1−cos 2π

k )−16(k−1)
√

2ε][
∑s
i=1 li].

By (7.2), we have J(x, ys) = J(x, x) = 0, hence

e−
J(x,y)

4σ2 ≤
∏
i∈[s]

e−
nli
4σ2

[2(1−cos 2π
k )−16(k−1)

√
2ε].

Let

γε := 2

(
1− cos

2π

k

)
− 16(k − 1)

√
2ε.

Note also that for any r1 6= r2, in the process of obtaining yr1 from yr1−1 and the process

of obtaining yr2 from yr2−1, we change colors on disjoint sets of vertices. Hence the order

of these steps of changing colors along cycles does not affect the final color assignment

mapping we obtain. From (7.8) we obtain

Î2 ≤
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
nmllγε

4σ2

− 1(7.18)

On the right hand side of (7.18), when expanding the product, each summand has the form[
(nk)2m2e−

2m2nγε
4σ2

]
·
[
(nk)3m3e−

3m3nγε
4σ2

]
· . . . ·

[
(nk)kmke−

kmknγε

4σ2

]
where the factor

[
(nk)2m2e−

2m2nγε
4σ2

]
represents that we changed along 2-cycles m2 times,

the factor
[
(nk)3m3e−

3m3nγε
4σ2

]
represents that we changed along 3-cycles m3 times, and

so on. Moreover, each time we changed along an l-cycle, we need to first determine the

l different colors involved in the l-cycle, and there are at most kl different l-cycles; we

then need to chose l vertices to change colors, and there are at most nl choices. It is

straightforward to check that if σ satisfies (7.14), then

nke−
nγε
4σ2 ≤ e

log k− δ logn
1−δ +

8(k−1)
√
2ε logn

(1−δ)(1−cos 2π
k ) .



62 ZHONGYANG LI

as n→∞. Therefore we have
∞∑

ml=0

(nk)mlle−
nmllγε

4σ2 ≤ 1

1− e
l

(
log k− δ logn

1−δ +
8(k−1)

√
2ε logn

(1−δ)(1−cos 2π
k )

)

Let

Û :=
k∏
l=2

 ∞∑
ml=0

(nk)mlle−
nmllγε

4σ2

 .

When (7.13) holds, let

ε :=
1√
n

Then when σ satisfies (7.14)

γε
4σ2
≤ δ log n

2(1− δ)
when n is sufficiently large.

Since log(1 + x) ≤ x for x ≥ 0, we have

0 ≤ log Û =
k∑
l=2

log

1 +
∞∑

ml=1

(nk)mlle−
nmllγε

4σ2


≤

k∑
l=2

∞∑
ml=1

(nk)mlle−
nmllγε

4σ2

≤
k∑
l=2

(
e
− δ logn

2(1−δ)

)l
1−

(
e
− δ logn

2(1−δ)

)l
≤ e−

δ logn
1−δ(

1− e−
δ logn
1−δ

)(
1− e−

δ logn
2(1−δ)

) → 0

as n → ∞. Hence we have limn→∞ Î2 = 0. By Lemma 7.5, limn→∞ Î1 = 0. Then the

proposition follows.

�

Proof of Theorem 2.4(b). For y ∈ ΘA, a, b ∈ [n] such that 1 = y(a) 6= y(b) = e
2πi
k . Let

y(ab) be the coloring of vertices defined by

y(ab)(i) =


y(i) if i ∈ {1, 2, . . . , n} \ {a, b}
e

2πi
k if i = a

1 if i = b

(7.19)
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Then

1− p(yA;σ) ≥ Pr

(
∪
a,b∈[n],1=y(a)6=y(b)=e

2πi
k

[r(y(ab))− r(y) > 0]

)
,

since any of the event [r(y(ab))− r(y) > 0] implies yA 6= y. Recall that

r(y(ab))− r(y) = 〈P(y),P(y(ab))−P(y)〉+ σ〈Wc,P(y(ab))−P(y)〉

= −4(n− 2)

(
1− cos

2π

k

)
− 2

(
1− cos

4π

k

)
+ σ〈Wc,P(y(ab))−P(y)〉.

Let

E(n) := 4(n− 2)

(
1− cos

2π

k

)
+ 2

(
1− cos

4π

k

)
For l ∈ {0, 1}, let Hl ⊂ y−1

(
e

2lπi
k

)
such that |Hl| = n

log2 n
= h. Then

1− p(yA;σ) ≥ Pr
(

maxa∈H0,b∈H1σ〈W,P(y(ab))−P(y)〉 > E(n)
)

Let (X ,Y,Z) be a partition of [n]2 defined by

X = {α = (α1, α2) ∈ [n]2, {α1, α2} ∩ [H0 ∪H1] = ∅}
Y = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [H0 ∪H1]| = 1}
Z = {α = (α1, α2) ∈ [n]2, |{α1, α2} ∩ [H0 ∪H1]| = 2}

For η ∈ {X ,Y,Z}, define the n× n matrix Wη from the entries of W as follows

Wη,c(i, j) =

{
0 if (i, j) /∈ η
Wc(i, j), if (i, j) ∈ η

For each a ∈ H0 and b ∈ H1, let

Xab = 〈WX ,c,P(y(ab))−P(y)〉
Yab = 〈WY,c,P(y(ab))−P(y)〉
Zab = 〈WZ,c,P(y(ab))−P(y)〉

Claim 7.8. The followings are true:

(1) Xab = 0 for a ∈ H0 and b ∈ H1.

(2) For each a ∈ H0 and b ∈ H1, the variables Yab and Zab are independent.

(3) Each Yab can be decomposed into Ya +Yb where {Ya}a∈H0 ∪{Yb}b∈H1 is a collection

of i.i.d. Gaussian random variables.

Proof. It is straightforward to check (1). (2) holds because Y ∩ Z = ∅.
For s ∈ H0 ∪H1, let Ys ⊆ Y be defined by

Ys = {α = (α1, α2) ∈ Y : α1 = s, or α2 = s}.

Note that for s1, s2 ∈ H0 ∪ H1 and s1 6= s2, Ys1 ∩ Ys2 = ∅. Moreover, Y = ∪s∈H0∪H1Ys.
Therefore

Yab =
∑

s∈H0∪H1

〈WYs,c,P(y(ab))−P(y)〉
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Note also that 〈WYs,c,P(y(ab))−P(y)〉 = 0, if s /∈ {a, b}. Hence

Yab =
∑

α∈Ya∪Yb

[Wc(α)] · {[P(y(ab))−P(y)](α)}

Note that for α ∈ Ya,

[P(y(ab))−P(y)](α) =

{
(e

2πi
k − 1)y(α2) if α1 = a

y(α1)(e−
2πi
k − 1) if α2 = a.

So,

Ya :=
∑
α∈Ya

[Wc(α)] · {[P(y(ab))−P(y)](α)}

=

 ∑
α∈Ya;α1=a

[y(α2)Wc(α)] +
∑

α∈Ya;α2=a

[y(α1)Wc(α)]


(

cos
2π

k
− 1

)

+i

 ∑
α∈Ya;α1=a

[y(α2)Wc(α)]−
∑

α∈Ya;α2=a

[y(α1)Wc(α)]

 sin
2π

k

Similarly, define

Yb : =

 ∑
α∈Yb;α2=b

[y(α2)Wc(α)]−
∑

α∈Yb;α1=b

[y(α1)Wc(α)]


(

1− cos
2π

k

)

−i

 ∑
α∈Ya;α1=b

[y(α2)Wc(α)]−
∑

α∈Ya;α2=b

[y(α1)Wc(α)]

 sin
2π

k

Then Yab = Ya + Yb and {Ys}s∈H0∪H1 is a collection of independent Gaussian random

variables. Moreover, the variance of Ys is equal to 8(n − 2h)
(
1− cos 2π

k

)
independent of

the choice of s. �

By the claim, we obtain

〈Wc,P(y(ab))−P(y)〉 = Ya + Yb + Zab
Moreover,

max
a∈H0,b∈H1

Ya + Yb + Zab ≥ max
a∈H0,b∈H1

(Ya + Yb)− max
a∈H0,b∈H1

(−Zab)

= max
a∈H0

Ya + max
b∈H1

Yb − max
a∈H0,b∈H1

(−Zab)

By Lemma 3.9 we obtain

max
a∈H0

Ya ≥ (1− 0.01ε)

√
2 log h · 8(n− 2h)

(
1− cos

2π

k

)

max
b∈H1

Yb ≥ (1− 0.01ε)

√
2 log h · 8(n− 2h)

(
1− cos

2π

k

)
max

a∈H0,b∈H1

Zab ≤ (1 + ε)
√

4 log h ·max Var(Zab)
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with probability 1− on(1).(Here on(1)→ 0 as n→∞.) Moreover,

VarZab ≤ 32h2

which is o(n). Hence

max
a∈H1,b∈H2

〈Wc,P(y(ab))−P(y)〉 ≥ 2(1− 0.01ε− o(1))

√
2 log n · 8(n− 2h)

(
1− cos

2π

k

)

≥ 8(1− 0.01ε− o(1))

√(
1− cos

2π

k

)
n log n

with probability 1− on(1). Since σ2 >
(1+δ)[n(1−cos 2π

k
)]

2 logn , we have

Pr
(

maxa∈H0,b∈H1σ〈W,P(y(ab))−P(y)〉 > E(n)
)
≥ 1− on(1)

Then the lemma follows. �

7.2. Algorithm: Complex Semi-Definite Programming and GOE perturbation.

In this section, we prove Theorem 2.5.

Assume

V = V1 + iV2; X = X1 + iX2

where U1 and X1 are n × n real symmetric matrices, and U2 and X2 are n × n real anti-

symmetric matrices.

Let

X̃ =

(
X1 −X2

X2 X1

)
Ṽ =

(
V1 V2

−V2 V1

)
,

then the complex optimization problem (2.17) is equivalent to the following real optimiza-

tion problem

max〈Ṽ , X̃〉(7.20)

subject to X̃ii = 1, for 1 ≤ i ≤ 2n

X̃p,q = X̃p+n,q+n, for 1 ≤ p ≤ n, 1 ≤ q ≤ n
X̃p,q+n = −X̃p+n,q, for 1 ≤ p ≤ n, 1 ≤ q ≤ n.

and X̃ � 0

The dual program of (7.20) is

min tr(Z)(7.21)

subject to Z − Ṽ +

(
A 0

0 −A

)
+

(
0 B

B 0

)
� 0

Z is diagonal

By complementary slackness

X = X1 + iX2 = yyt = (y1 + iy2)(y1 − iy2)t
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is the unique optimum solution of (2.17) if and only if there exists a dual feasible solution

(Z,A,B), such that〈
Z − Ṽ +

(
A 0

0 −A

)
+

(
0 B

B 0

)
,

(
y1y

t
1 + y2y

t
2 y1y

t
2 − y2y

t
1

y2y
t
1 − y1y

t
2 y1y

t
1 + y2y

t
2

)〉
= 0;

which is equivalent to 〈
Z − Ṽ ,

(
y1y

t
1 + y2y

t
2 y1y

t
2 − y2y

t
1

y2y
t
1 − y1y

t
2 y1y

t
1 + y2y

t
2

)〉
= 0.(7.22)

Assume

Z =

(
Z1 0

0 Z2

)
,

where Z1, Z2 are n× n real diagonal matrices. Then (7.22) is equivalent to

<
[
yt(Z1 + Z2 − 2V)y

]
= 0(7.23)

Note that

=
[
yt(Z1 + Z2 − 2V)y

]
= 〈Z1 + Z2 − 2V1,y2y

t
1 − y1y

t
2〉 − 〈2V2,y1y

t
1 + y2y

t
2〉

which is identically zero since each term on the right hand side of (7.24) is the inner product

of a symmetric matrix and an anti-symmetric matrix. Moreover, if the minimizer of (7.21)

is unique, then as a Hermitian matrix, the second smallest eigenvalue of

S := Z1 + Z2 − 2V

is strictly positive.

From (7.23) and the fact that S is positive semi-definite, we obtain Sy = 0. Hence

Z1(i, i) + Z2(i, i) = 2

n∑
j=1

y(i)[V(i, j)]y(j);

and therefore,

S(i, i) = 2
∑

j∈[n],j 6=i

y(i)V(i, j)y(j)− 2V(i, i)(7.24)

For i 6= j,

S(i, j) = −2V(i, j)(7.25)

For a Hermitian matrix M , we define the Laplacian ∆(M) of M by

∆(M) := diag(M1)−M

where 1 is the column vector all of whose entries are 1. Then from (7.24), (7.25), explicit

computations show that

S = 2diag(y)[∆(diag(y)Vdiag(y))]diag(y)
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Moreover,

diag(y)Vdiag(y) = diag(y)[yyt + σdiag(y)Wsdiag(y)]diag(y)

= 11t + σWs

Therefore

∆[diag(y)Udiag(y)] = n

(
In×n −

1

n
11t
)

+ σ∆[Ws].(7.26)

The matrix n
(
In×n − 1

n11t
)

has rank (n− 1) and two distinct eigenvalues: 0 and n. The

eigenvalue 0 has multiplicity 1 and n has multiplicity (n − 1). Note that 0 is also an

eigenvalue of the matrix ∆[Ws], and the n-dimensional vector 1 is an eigenvector with

respect to the eigenvalue 0 for both the matrix n
(
In×n − 1

n11t
)

and the matrix ∆[Ws].

Therefore the matrix (7.26) is positive definite if

σ‖∆[Ws]‖ ≤ n,(7.27)

where ‖ · ‖ is the spectral norm of a matrix defined to be the largest modulus of its

eigenvalues. We have, by the triangle inequality,

‖∆Ws‖ ≤ max
i∈[n]

∣∣∣∣∣∣
n∑
j=1

Ws(i, j)

∣∣∣∣∣∣+ ‖Ws‖.(7.28)

The matrix Ws is a standard GOE matrix. Recall the following proposition about the

largest eigenvalue of the standard GOE matrix.

Proposition 7.9. (Tracy-Widom [9]) Let λ
(n)
max be the largest eigenvalue of an n×n GOE

matrix, then when n is large,

λ(n)
max ∼

√
2n+

n−
1
6 ξ1√
2

where ξ1 is a random variable independent of n with the GOE Tracy-Widom distribution.

By Proposition 7.9, for any fixed δ > 0,

lim
n→∞

P(‖Ws‖ ≥ (1 + δ)
√

2n) = 0.(7.29)

Now we consider the distribution of maxi∈[n]

∣∣∣∑n
j=1 Ws(i, j)

∣∣∣. Since we require that Ws

is a symmetric matrix, the identically distributed Gaussion random variables {
∑n

j=1 Ws(i, j)}i∈[n]

are no longer independent. In our case the random vector (
∑n

j=1 Ws(1, j), . . . ,
∑n

j=1 Ws(n, j))

is a Gaussian random vector with mean 0 and covariance matrix given by

Σ =


n 1 . . . 1

1 n . . . 1

. . .

1 . . . 1 n


The following proposition was proved in [3].
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Proposition 7.10. (Theorem 2.2 of [3])Consider a triangular array of normal random

variables ξn,i, i = 1, 2, . . . ,, and n = 1, 2, . . . , such that for each n, {ξn,i, i ≥ 0} is a sta-

tionary normal sequence. Assume ξn,i ∼ N (0, 1). Let ρn,j := E(ξn,i, ξn,i+j) and assuming

that

(1− ρn,j) log n→ δj ∈ (0,∞], for all j ≥ 1 as n→∞

Assume that there exist positive integers ln satisfying ln = o(n) and for which

lim
n→∞

sup
j≥ln
|ρn,j | log n = 0.

and

lim
m→∞

lim sup
n→∞

ln∑
j=m

n
−

1−ρn,j
1+ρn,j

(log n)
−

ρn,j
1+ρn,j

(1− ρ2
n,j)

1
2

= 0

Then

lim
n→∞

Pr( max
1≤i≤n

ξn,i ≤ un(x)) = exp[−θ exp(−x)]

where

un(x) =
x

an
+ bn;

and

an =
√

2 log n

bn =
√

2 log n+
log logn+ log 4π

2
√

2 log n

and θ ∈ [0, 1] is a constant. In particular θ = 1 if δj =∞ for all j ≥ 1.

By Proposition 7.10,

max
i∈[n]

∣∣∣∣∣∣
n∑
j=1

Ws(i, j)

∣∣∣∣∣∣
≥ (1− δ)

√√√√√2 log n

max
i∈[n]

Var

∑
j∈[n]

Ws(i, j)


= (1− δ)

√
2n log n

with probability 1− on(1). Moreover, by Lemma 3.9, for any fixed ε > 0

max
i∈[n]

∣∣∣∣∣∣
n∑
j=1

Ws(i, j)

∣∣∣∣∣∣ ≤ (1 + ε)
√

2n log n(7.30)

with probability 1− o(1).

Then Theorem 2.5 follows from (7.27), (7.28), (7.29) and (7.30).
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Appendix A. Proof of Lemma 3.9

It is known that for a standard Gaussian random variable Gi and x > 0,

xe−
x2

2

√
2π(1 + x2)

≤ Pr(Gi > x) ≤ e−
x2

2

x
√

2π
(A.1)

Let G1, . . . , GN be N standard Gaussian random variables. Then by (A.1) we have

Pr

(
max
i∈[N ]

Gi ≥ (1 + ε)
√

2 logN

)
≤

∑
i∈[N ]

Pr
(
Gi ≥ (1 + ε)

√
2 logN

)

≤ Ne−(1+ε)2 logN

2(1 + ε)
√
π logN

≤ N−ε

If we further assume that Gi’s are independent, then

Pr

(
max
i∈[N ]

Gi < (1− ε)
√

2 logN

)
=

∏
i∈[N ]

Pr
(
Gi < (1− ε)

√
2 logN

)
=

∏
i∈[N ]

[
1− Pr

(
Gi > (1− ε)

√
2 logN

)]
By (A.1) we obtain

Pr

(
max
i∈[N ]

Gi < (1− ε)
√

2 logN

)
≤

(
1− (1− ε)

√
2 logN√

2π(1 + 2(1− ε)2 logN)

1

N (1−ε)2

)N
When (3.22) holds, we have

Pr

(
max
i∈[N ]

Gi < (1− ε)
√

2 logN

)
≤
(

1− 1

N1−ε

)N1−ε·Nε

≤ e−Nε

Then the lemma follows.
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