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ABSTRACT. We study the vertex classification problem on a graph whose vertices are in
k (k > 2) different communities, edges are only allowed between distinct communities,
and the number of vertices in different communities are not necessarily equal. The ob-
servation is a weighted adjacency matrix, perturbed by a scalar multiple of the Gaussian
Orthogonal Ensemble (GOE), or Gaussian Unitary Ensemble (GUE) matrix. For the
exact recovery of the maximum likelihood estimation (MLE) with various weighted adja-
cency matrices, we prove sharp thresholds of the intensity o of the Gaussian perturbation.
These weighted adjacency matrices may be considered as natural models for the electric
network. Surprisingly, these thresholds of o do not depend on whether the sample space
for MLE is restricted to such classifications that the number of vertices in each group is
equal to the true value. In contrast to the Zs-synchronization, a new complex version of
the semi-definite programming (SDP) is designed to efficiently implement the community
detection problem when the number of communities k is greater than 2, and a common
region (independent of k) for o such that SDP exactly recovers the true classification is
obtained.

1. INTRODUCTION

Most graphs of interest display community structure, i.e., their vertices are organized
into groups, called communities, clusters or modules. In some cases, edges are concen-
trated within groups. For example, vertices of a graph may represent scientists, edges
join coauthors. Each group consists of vertices representing scientists working on the
same research topic, where collaborations are more frequent. Likewise, communities could
represent molecules with similar structure in molecule interaction networks among which
interactions are more likely, groups of friends in social networks who communicate more
often, websites on similar topics in the web graph where there are more hyperlinks in
between, and so on. In some other cases, edges may only be possible between vertices
in distinct groups. For instance, in an electrical network, electrical current can only be
observed between two sites with different electrical potential; commercial trades can only
occur when two individuals own different goods. Identifying communities may offer insight
on how the network is organized. It allows us to focus on regions having some degree
of similarity within the graph. It helps to classify the vertices, based on their role with
respect to the communities they belong to. For instance we can distinguish vertices in the
interior of their clusters from vertices at the boundary of the clusters, which may act as
brokers between the modules and, in that case, could play a crucial role both in holding

the modules together and in the dynamics of spreading processes across the network.
1
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Identifying different communities in the stochastic block model is a central topic in many
fields of science and technology; see [1] for a summary. A lot of spectacular work has been
done when the graph has two equal-sized communities, see, for example, [7, 8, 2] for an
incomplete list. Community detection with two equal-sized communities has also been
studied on hyper-graphs, see [6].

In this paper, we instead study the community detection on a graph in which there are
k(k > 2) distinct clusters, not necessarily equal-sized, and edges are only allowed between
vertices in different communities. This corresponds to the famous k-partite graph in graph
theory. The observation is a weighted adjacency matrix, perturbed by a o-multiple of the
Gaussian Orthogonal Ensemble (GOE), or the Gaussian Unitary Ensemble (GUE) matrix.
Here o is a positive number representing the intensity of the Gaussian perturbation. These
weighted adjacency matrices, as will be explained later, may be considered as natural
models for the electric network. Given such observations, we apply the maximum likelihood
estimation (MLE) to determine which vertex belongs to which group, or community. We
obtain a division, or an assignment of vertices of the graph into communities by the MLE, if
this assignment of vertices is the same as the true assignment of vertices into communities
for every vertex, we say that the MLE exactly recovers the true community structure of
the graph, or the exact recovery occurs for the MLE.

The main goal of the paper is to investigate the condition when the MLE exactly recovers
the true community structure of the graph. We prove sharp phase transition results with
respect to the intensity o of the Gaussian perturbation for the exact recovery of the MLE.
More precisely, we explicitly find the critical value for o, such that if o is less than the
critical value, then as the size of the graph goes to infinity, with probability tending to 1
exact recovery occurs. On the other hand, if o is greater than the critical value, then as
the size of the graph goes to infinity, with probability tending to 0 exact recovery occurs.
Interestingly, the threshold, or critical value, of ¢ does not depend on whether or not we
restrict the sample space for MLE to those classifications in which the number of vertices
of each group, or community, is the same as the true value. These results are obtained by
analyzing the Gaussian distribution through various inequalities.

Semidefinite programming (SDP) is one of the most exciting developments in math-
ematical programming in the 1990’s. SDP has applications in diverse fields including,
but not restricted to, traditional convex constrained optimization, control theory, and
combinatorial optimization. A linear programming (LP) problem is one in which we wish to
maximize or minimize a linear objective function of real variables over a polytope. In SDP,
we instead use real-valued vectors and are allowed to take the dot product of vectors; non-
negativity constraints on real variables in LP are replaced by semi-definiteness constraints
on matrix variables in SDP. Because SDP is solvable via interior point methods, most of
these applications can usually be solved very efficiently in practice as well as in theory.

It is well-known that the community detection problem with & = 2 equal-sized commu-
nities may be efficiently solved by a semi-definite programming algorithm; see, for instance,
[4, 5]. When there are k > 3 different communities, we can design a “complex version”
of the semi-definite programming for efficient recovery. The idea is to relax the constraint
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on the rank of the optimal solution, solve the optimization problem on a larger space of
the semi-definite matrices, and then achieve efficient recovery. We also obtain an interval
of o to guarantee the exact recovery of the SDP, by applying the celebrated result of the
Tracy-Widom fluctuation of the maximal eigenvalue of the GOE matrix; see [9)].

2. MAIN RESULTS.

In this section, we state the main results proved in the paper. We first discuss the basic
definition and notation of the k-partite graph, where k is a positive integer with value at
least 2.

A k-partite graph G = (V, E) is a graph whose vertices can be colored in k different
colors such that any two vertices of the same color cannot be adjacent, or joined by an
edge. Assume V = [n] :={1,2,...,n} is the vertex set of G. Define the set of colors

Ry = {Cl,...,ck}CR

to be a set consisting of k distinct real numbers representing k different colors.

Let = : [n] — Ry be a mapping from the set of vertices to the set of colors, i.e., it
assigns a unique color in Ry to each vertex in [n]. Such a mapping z is also called a color
assignment mapping of a graph. For 1 <i <k, let

v ei) = {j €[]+ y(j) = e}y

that is, y~1(c;) is the set consisting of all the vertices with color ¢; under the mapping y.
For each color ¢; € Ry (1 <1i < k), let

ni(x) := ‘xil(ci)‘

In other words, n;(z) is the total number of vertices in [n] with color ¢; under the mapping
x. It is straightforward to see that n;(x)’s are positive integers satisfying

k
(2.1) Zm(:z:) = n.
i=1

Given these definitions, to determine the colors of all the vertices of a graph is the same
as to identify the color assignment mapping of the the graph. In vertex-color-detection
problems that will be discussed later, we shall find color assignment mappings of graphs
from the following spaces of color assignment mappings:

(1) For each positive integer n, let ny > ng > ... > ny be fixed and satisfy (2.1). Let
Qn,,...n,, be the set of all the color assignment mappings under which the number
of vertices with color ¢; is exactly n; for each 1 <14 < k; that is,

Qg = {2 0] = Ri| |z (ei)| = niy V1 <i <k}
(2) Let € be the set of all the color assignment mappings; that is,

Q={z:[n] = R}
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(3) Let ¢ > 0. Let Q. be the set of all the color assignment mappings in {2 such that
the number of vertices in each color is at least cn, i.e.

Qnymy, = {z: [n] = Rg|: min ‘:L'_l(cj)’ > cn}.
Jelk]

2.1. Real Weighted Adjacency Matrix with Gaussian Perturbation. We first con-
sider the community detection problem when the observation is a real weighted adjacency
matrix with Gaussian perturbation.

In Theorems 2.1 and 2.2, we observe different weighted adjacency matrices for a k-
partite graph, both of which are perturbed by a o-multiple of a matrix with i.i.d. standard
Gaussian entries. The weighted adjacency matrix in 2.1 can be considered as a natural
model for an electrical network, where each one of the n vertices has one of the k distinct
electric potentials. The weight of each (oriented) edge is the difference of electric potentials
between its initial point and its terminal point. This difference in potentials is proportional
to the intensity of electric current on the edge. Given the observation, the goal is to find
the difference of electric potentials between each pair of vertices; then we can determine the
electrical potential of each vertex up to an additive constant. We consider the probability
of the exact recovery of MLE, and find a sharp threshold with respect to the intensity o
of the Gaussian perturbation. More precisely, there is a critical value o, depending on n,

such that if lim,, s E" < 1, the limit of the probabilities for the exact recoveries of MLE

as n — oo is 1; while if lim,, o L%l > 1, the limit of the probabilities for the exact recovery
of MLE as n — oo is 0.
Before stating Theorem 2.1, recall that the Frobenius norm of an m x m complex matrix

A= {Ai,j}:‘?jzl € C™*™ ig defined by

> 1A

1,7=1

1Al F =

Theorem 2.1. Let ny > ... > ni be the numbers of vertices in k different colors cq, ..., cy,
respectively. For an arbitrary mapping x € ), let G(x) be the n X n square matriz whose
entries are defined by

(2.2) Gij(z) = (i) — z(j);
where 1 < 4,5 < n. Lety € Qp, ..n, be the true color assignment function. Assume the
observation is given by

(2.3) T =G(y) + oW

where W is a random n X n matriz with i.i.d. standard Gaussian entries, and o € R
is deterministic. Let k and {c1,...,ck} be fized as n — oo. Assume that there exists a
constant ¢ > 0 independent of n, such that ©= > ¢ for all n, Let

(2.4) § = argmingeq, . ||IT—G()|%;
(2.5)
We have

argmin,cq|| T — G(x)|[7-

<«
Il



EXACT RECOVERY OF COMMUNITY DETECTION IN K-PARTITE GRAPH MODELS 5

(1) Assume there exists a constant 6 > 0 independent of n, such that

(2.6) p2 o L= d)nminicicici(ei — ¢j)”
’ 4logn '

Then

lim Pr(y =y) =1; and lim Pr(yg =y) =1.

n—oo n—oo

(2) Assume there exists a constant 6 > 0 independent of n, such that

(1 + 6)nminj<jj<i(c; — ¢;)?

2. 2
(2.7) 7= 4logn

Then

lim Pr(y =y) =0; and lim Pr(g =y) =0.

n—00 n—oo

Note that y (resp. ¢) are actually the maximum likelihood estimation (MLE) of the true
value y in the sample space Q,, . (resp. Q) with respect to the given observation T,

since for each given color assignment mapping = € €2, the probability density at each T is
IT-G()3
proportional to e™ PR

More general versions of Theorem 2.1 are proved in Sections 3 and 4; see Propositions
3.5, 3.7, 4.3, 4.4. In these propositions, we also allow the total number of colors k to change
with n. It is straight forward to check that when k£ and R are fixed as n — oo, Theorem
2.1 is a special case of these propositions.

In Theorem 2.2, we observe the uniformly-weighted adjacency matrix for the undirected
k-partite graph, perturbed by a noise which is a o-multiple of a matrix with i.i.d. standard
Gaussian entries. Given the observation, the goal is to determine whether two vertices
have the same color or not. For z,y € €, we say = and y are equivalent if for all i, j € [n],
x(i) = z(j) if and only fi y(i) = y(j). We write z € C(y) if x and y are equivalent. Now
we only need the algorithm to find a color assignment mapping which is equivalent to the
true color assignment mapping. Again we find a sharp threshold for the probability of the
exact recovery of the MLE with respect to the parameter o.

Theorem 2.2. Let ny > ... > ny be the numbers of vertices in the k different colors,
respectively. For an arbitrary mapping x € Q, let K(x) be the n x n square matriz with
entries defined by

(2.8) Ki(r) = {1 ot 720,

0 if 2(i) = z(j)

where 1 <i4,5 < n. Lety € Cy,, . n, be the true color assignment function. Assume the
observation s given by

(2.9) R =K(y) + oW

where W is a random n X n matrix with i.i.d. standard Gaussian entries as before. Let the
total number of colors k and the set of all colors {ci,...,cr} be fixzed as n — oco. Assume
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there exists a constant ¢ > 0, such that ny > cn for all n. Let

(2.10) § = argmingeq, |R—K(2)|%

3
(2.11) 7 = argminwegn1 _____ nkHR—K(aﬁ)H%
We have

(1) Assume there exists 6 > 0, such that

(1 =9)(nk + nk—1)
4logn

(2.12) o <
Then
Jim Pr(y € C(y)) = 15 and lim Pr(y € C(y)) = 1.
(2) Assume there exists 6 > 0, such that

(1+6)(ng +ng—1)

2.13 2>
( ) 7 4logn

then
lim Pr(y € C(y)) =0; and lim Pr(y € C(y)) = 0.

n—oo n—oo

More general versions of Theorem 2.2 are proved in Sections 5 and 6; see Propositions
5.7,5.8, 6.7, 6.8. In these propositions, we also allow the total number of colors k to change
with n. It is straight forward to check that when k and Ry are fixed as n — oo, Theorem
2.2 is a special case of these propositions. The proofs of Theorems 2.1 and 2.2 are based
on various inequalities of Gaussian distributions.

From these two theorems, we can see that we may either choose the sample space for
MLE as all the possible assignments of k colors, or potentials, to n vertices in Theorem 2.1
(all the possible classifications of n vertices in k distinct groups in Theorem 2.2), or choose
the sample space for MLE to be restricted on all the classifications such that the number
of vertices of each type coincides with that of the true value - either way we obtain the
same threshold.

2.2. Complex Unitary Matrix with Gaussian Perturbation. Now we consider the
community detection problem with k£ > 2 different communities when the observation is a
complex unitary matrix with Gaussian perturbation. Community detection problems with
such an observation matrix may be efficiently recovered by the SDP.

Let dy,...,dy € [0,27) be k distinct real numbers. Let i satisfy i = —1 be the imaginary
unit. Let = : [n] — {el®,... €l%} be a mapping which assigns each vertex in [n] a unique
color represented by a complex number of modulus 1. Let © be the set consisting of all
such mappings, that is

0 :={x:[n] = {4, ... &%}
For a mapping x € O, let P(z) be an n x n matrix whose entries are given by

P.y(x) = z(a)z(b) = eloslz(a)l—Log[z(b)] 1<a,b<n,
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where z(b) is the complex conjugate of x(b) and Log|-] is the principal branch of the complex
logarithmic function.
For each x € ©, if we consider x as an n x 1 vector given by

then

which is a rank-1 positive semi-definite Hermitian matrix whose diagonal entries are 1.
We may further restrict the MLE to a subspace of © satisfying the following assumptions.

Assumption 2.3. (1) The number of vertices in each color is the same. In particular,
this implies that the total number of vertices n, is an integer multiple of the total
number of colors k.

(2) i, ... €% are the kth roots of unity. Without loss of generality, assume that
dy =250 for 1 =1, k.
Let © 4 be the subset of © consisting of all the mappings satisfying the above two as-

sumptions. That is,

Oy := {xe@: ‘xil (eidj)) = %, Vl<j Sk}.
We define an equivalence class on © 4 as follows. We say x,y € O 4 are equivalent if there
exists a fized angle o, such that el®x =y. For each z € ©4, let 0(2) be the equivalence

class containing y.

Let y € © 4 be the true color assignment function. Define the observation by
U=P(y) + oW,

where W, is the standard GUE random matrix. More precisely, W, is a random Her-
mitian matrix whose diagonal entries are i.i.d. standard real Gaussian random variables
(NM(0,1)r), and upper triangular entries are i.i.d. standard complex Gaussian random vari-
ables (M (0,1)¢).

Given each observation U, the goal is to determine the true color assignment function
y, up to a multiplicative constant. Let

(2.14) y" = argmin,ce, [|U — P(2)||%
Note that for any = € ©,

1P ()7 = z(a)z(b)z(b)z(a) = n®,
1<a,b<n
which is independent of x. Hence we have

yA = argmaXm@A?R(U, P(x))
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where R denotes the real part of a complex number, and (-, -) denotes the inner product of
two matrices defined by

(2.15) (My, My) = > M(i, j)Ma(i, 5).
i,j€n]
where My, My € C<™,

It is not hard to see that for any x,z € © 4, if x € 6(z), then P(x) = P(2). So given any
observation U, we cannot distinguish color assignment mappings in the same equivalence
class of #4. Therefore the best we can do by an MLE algorithm is to recover the equivalence
class of the true color assignment function. We have the following theorem.

Theorem 2.4. Let y € ©4 be the true color assignment function satisfying As-
sumption 2.3. Let k be fized and n — oo.
(a) If there exists § > 0, such that

(1—10) [n(1 — cos 2F)]

2.1 2 k
(2.16) < 2logn

then

lim Pr(y® € 6(y)) =1

n—0o0

(b) If there exists 6 > 0, such that

52 s (1+9) [n(l — oS 2%)]
2logn

then
lim Pr(y* € 6(y)) = 0.

Now we describe a complex semi-definite programming for community detection with
multiple (more than 2) communities. For a true color assignment function y € ©, let the
observation be given by

V = P(y) + odiag(y)Wsdiag(y)

where W is the standard GOE random matrix. More precisely, W is a random symmetric
matrix whose diagonal entries and upper triangular entries are i.i.d. standard real Gaussian
random variables (M(0,1)r). Note that V is a Hermitian matrix.

Given each observation V, the goal is to find the true color assignment function y, up
to a multiplicative constant. We may consider the following optimization problem

(2.17) max R(V, X)
subject to Xiu=1
and X >0

where X > 0 means that X is a positive semi-definite Hermitian matrix.
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For any mapping z € O, the matrix P(z) := xX' is a rank-1 Hermitian matrix. The

idea for the MLE is to find the minimizer
argminp,) || P(z) — V||

among all the rank-1 positive semi-definite Hermitian matrices with diagonal entries 1 and
the form xx!. To achieve efficient recovery, we may relax the rank-1 constraint and consider
instead an optimization over all the positive semi-definite Hermitian matrix with diagonal
entries 1.

Then we have the following theorem

Theorem 2.5. Let p(Y;0) be the probability that the solution Y of (2.17) coincides with
y¥!, where y is the true color assignment mapping for vertices. If there exists a constant

0 > 0 independent of N, such that o < (\1/;27;/3, then

lim p(Y;o0) =1

n—oo

In Theorem 2.5, it turns out that the bound (\1/;;27;/5 on ¢ to guarantee the exact recovery

of the SDP is independent of k - the total number of communities. However, if we instead
use the GUE matrix W, instead of diag(y)W sdiag(¥) to represent the noise, Theorem 2.4
shows that threshold of ¢ to guarantee the exact recovery of MLE does depend on k. This

threshold is of order O ( \/nlloW) when k& ~ n. Since the SDP is an algorithm obtained

from the relaxation of the rank constraint of the MLE, one may naturally expect a smaller

common upper bound for ¢ to guarantee the exact recovery of the SDP for all k, when the
noise is represented by a o-multiple of W,.
Theorem 2.4 is proved in Section 7.1; and Theorem 2.5 is proved in Section 7.2.

3. PROOF OF THEOREM 2.1 WHEN THE NUMBER OF VERTICES IN EACH COLOR IS FIXED
IN THE SAMPLE SPACE

We first consider the MLE in Theorem 2.1 with sample space €2y, .., , where the number
of vertices with color ¢; is fixed to be n; - the same as the true value, for 1 <7 < k. For a
mapping z € Qy,,, ., let G(z), T be defined as in (2.2), (2.3), respectively.

Given a sample T, the goal is to determine the color assignment function y. Let 3 be
defined by (2.4). Note that for all z € Q,, .,

X

IG@IF=2 > nnjle—c)?,

1<i<j<k
which depends only on ni,...,ng, but is independent of z. Then we have
§ = argmax,cq, . (G(x),T)
Let
(3.1) p(9,0) = Pr(§ =),

where y € Q. n, is the true color assignment function.

k
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For each x € Qy, . n,, define

Then

Note that

The expression above shows that f(z) — f(y) is a Gaussian random variable with mean
(G(), G(z) — G(y)) and variance ¢*||G(z) — G(y)|-
Fori,j € [k], z,y € Qn,... n,. let

(3.2) Sij(x,y) ={l € [n] - x(l) = ci,y(l) = ¢j};

i.e., Si;(x,y) consists of all the vertices which have color ¢; in 2 and color ¢; in y.

Let t; j(x,y) = |Si;(x, )|, i.e., t;; is the total number of vertices which have color ¢; in
x and color ¢ in y. We may write ¢; ; (resp. S; j) instead of ¢; j(x,y) (resp. S; ;j(x,y)) when
there is no confusion. Note that since x,y € €y, . »,, we have

(3.3) > tij=ni, Vi€ K]

JE[K]

(3.4) D tij=mnj, Vielk
i€[k]

For each vertex | € S; j, the inner product of the row in G(z) corresponding to [ and the
row in G(y) corresponding to [ is

(Gu(2),Gi(y)) = 3 Gup(2)Cir(y)
ren]
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Then
(G(2),G(y) = Y (Gi(x),Gi(y)
=1
(35) = Z ti,jtu,v(cz‘ — Cu)(Cj — CU)
,J,u,0€E[k]
= 2 |:Z tijj-ci‘cj] |: Z tuﬂ,] — 2 |:Z ti,j~ci] |: Z tu,v.cv]
1,5€ k] u,veE k] i,5€[k] u,v€E k]

= Qn{z tz',j-Ci'Cj] 2|:an€1] )

i,j€[K] i€ (k]
where the last identity follows from (3.3) and (3.4).
Note that for 4, j € [k] and z € Qy,,,_n,,

L

Therefore

2
(G(y),G(y)) =2n Z [ni-cf] —2 [Z n; - Cz’]
1€[k]

i€[k]

For z,y € Qp, . n,, let

M(z,y): = -E[f(z) - f(y)] = —(G(y), G(z) — G(y))
(3.6) = 2n Z [nz : cf] —2n { Z tij-Ci- cj]
i€[k] i,j€[k]

Var[f(z) — f(y)] = 20°M (z,y)

Therefore we have

f@) = fy) ~ N(=M(z,y),20° M (z,y))
and

£ = flz,y) + M(z,y) ~ N(0,1).

o/ 2M(x,y)

Then for z € Q. n, \ {y}

Pr(f(z)— f(y) >0) = Preonon (5 - M(:z:,y))

V20

Using the standard Gaussian tail bound Precpar(o,1)(§ > ) < e~2%" we obtain

_ M(=zy)

Pr(f(z) — f(y) >0) <e 47
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Then
(3.7) 1—p(g;0) < > Pr(f(z) - f(y) >0)

IN
g
[

%

Lemma 3.1. Let y € Qp, .. n, be the fized color assignment mapping, and let x change

over Qp, . Under the constraints (3.3) and (5.4), M(x,y) achieves its minimum if and

only if

Mk

tii = N
tii=0, ifi]
and the minimal value of M (z,y) is 0.

Proof. Note that

Z tzg C; C]< Z C +c :Z[TLZC?L

i,j€[K] i,j€[K] i€[k]
where the identity holds if and only if
® ¢; = cj whenever t; ; # 0.

Then the lemma follows from the assumption that ¢; # ¢; whenever i # j. O
Before proving Theorem 2.1, we introduce a definition.

Definition 3.2. Let | > 2 be a positive integer. Let x,y € 0y, . pn,. We say I distinct
colors (iy,...,i;) € [k]' is an l-cycle for (x,y), if ti, i (2,y) >0 forall2 < s <1+1,
where ij41 = 11.

Lemma 3.3. Let z,y € Q. n, and x # y. Then there exists an l-cycle for (x,y) with
2<I<k.

Proof. Since = # y and z,y € Qp, _n,, there exists i1 € [k], such that ¢; ; (x,y) < ni,.
Since 3 epp tin,i(%,y) = niy, there exists iy € ([k] \ {i1}), such that ¢, i,(z,y) > 0. The
following cases might occur:
o If t;, ;, (x,y) > 0, then we find a 2-cycle (i1,1i2) for (z,y).
o If tiy4 (2, y) = 0, since &5, (z,y) > 0 and 3o et (2,y) = niy, we obtain
that ti,i,(2,y) < ni,. Moreover, since Y ey tin,j(2,y) = iy, there exists iz €
([k]\ {i1,42}), such that t;, i, (z,y) > 0.
o If t;, s, (x,y) > 0, then we find a 3-cycle (i1,1i2,13) for (z,y).
In general, let s > 2. Assume we find distinct 41,142, ...,is+1 € [k], such that

o for each 1 <7 <'s, we have ¢;_; ., (x,y) > 0; and
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b tis+17i1 (xvy) =0.

Since Zje[k} bjisir (x7 y) = Mgy, WE have bigt1,ist (x7 y) < Mgy - Since Zje[k} tis+17j(x7 y) =
N, there exists is19 € ([k] \ {¢s41,41}), such that t; ;... (z,y) > 0. The following cases
might occur

(1) if 4549 = iy, for some 2 < r < s. Then we find a (s + 2 —r)-cycle (ip,ips1...,05+1)

for (z,vy).
(2) if ig19 # iy, for all 1 <r < s+ 1, but there exists 1 < g < s+ 1, such that
(3.8) tis+27tig >0
Then let gas € [s + 1] be the maximal g € [s + 1] such that (3.8) holds. Then we
find a (s + 3 — gar)-cycle (igy, igy+1,-- -, lst2) cycle for (z,y).

(3) if neither (1) or (2) occurs, increase s by 1 and repeat the above process.

Since there are k distinct colors in total, we can always find an Il-cycle for (z,y) with
2<I[<k. O

To measure the difference between two color assignment functions z,y € €y, . ., We
introduce the following definition.

Definition 3.4. Define the distance function on ) Dg : Q2 x Q = N as follows
DQ(«T, y) =n—- Z ti,i(xa y)

i€[k]

Proposition 3.5. Assume § € (0, %), such that

01
(3.9) log k — 1?; < By <0
and
1-— 5)0011
1 2 o (1=0)Con
(3.10) 7= 4logn
where Cy > 0 is a constant given by
_ : 2
(3.11) Co = 1§I}1<1§1§k(cl cj)
Then
.—2Bg
(3.12) p(g); 0—) > 92— e (1—e~Boy(1-e—2P0) :

where p(y; o) is giwen by (6.1).
Proof. Let

(3.13) = 3 e
€y ,...,ny, \{y}
By (3.7), it suffices to show that lim,_,~, I = 0.
We shall find an upper bound for 1.
Recall that y € Q.. , is the true color assignment mapping. Since x # y, by Lemma
3.3, there exists an [-cycle (i1, ...,14;) for (z,y) with 2 <1 < k. Then for each 2 < s < (I+1),
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choose an arbitrary vertex us in S;,_, ;. (x,y), and let y1(us) = ¢;,_,, where iy :=4;. For

any vertex z € [n] \ {ug, ..., w41}, let y1(2) = y(2).
Note that y1 € ... n,. More precisely, for 1 < s <1, we have

tisis (@ y) + 1=t (2, 91);
tisvis-kl (CL’, y) - 1 = ti57is+1 (':L" yl)
and
ta,b(JUa y) = ta,b(l') yl)a V(a, b) ¢ {(i& 7;8)7 (i57 i8+1)}i:1'

From (3.6) we obtain

M(z,y1) — M(z,y) = —2n Z [tap(2; Y1) = tap (2, y)] cacs
a,be(k]

= —2n | (¢ —ciciy)

s€ll]
= -n Z(Cis - Cis+1)2
se(l]
§ —nlCo
where Cj is given in (3.11). Therefore
_ M(=zy) _ M(zy1) _nlCy
(3.14) e 102 <e 402 e 02 .

If y; # x, we find an ly-cycle (2 < Iy < k) for (z,y1), change colors along the l-cycle
as above, and obtain another cycle assignment mapping y2 € €y, . n,, and so on. Let
1o := ¥, and note that for each r > 1, if y, is obtained from y,_; by changing colors along
an I, cycle, we have

DQ(mvyfr) = DQ(Z'7?JT—1) — Iy

Therefore finally we can obtain z from y by changing colors along at most bJ cycles.
Using similar arguments as those used to derive (6.18), we obtain that for each r

_ M(=z,yp_1) _ M(z,yr) _ nlrCy

[ 402 S [ 402 e 402 .

Therefore if ys = x for some 1 < s < LgJ, we have

_ M(zy) _Mys) _"C0(Siegq )
e 42 <e 102 ¢ 402

By (3.6), we have M (z,ys) = M (x,z) = 0, hence

_ M(z,y) _ nCpl;

e 402 SH@ 402 |

1€[s]

Note also that for any r; # ra, in the process of obtaining y,, from y,,_; and the process
of obtaining y,, from y,,_1, we change colors on disjoint sets of vertices. Hence the order
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of these steps of changing colors along cycles does not affect the final color assignment
mapping we obtain. From (3.13) we obtain

k e ! 7nmllCO
(3.15) I<]]| > mymie™ a7 | —1
1=2 \m;=0

On the right hand side of (6.19), when expanding the product, each summand has the form

2monCy 3mgnCp kmpnCq

[(nk)me—m] : [(nk)?’m%_ ] [(nk)kmke—

2monC
where the factor [(nk)Qm2 e i 0] represents that we changed along 2-cycles mgy times,

3mgnC,
the factor [(nk)3m3e_ e represents that we changed along 3-cycles mgs times, and
so on. Moreover, each time we changed along an [-cycle, we need to first determine the
| different colors involved in the I-cycle, and there are at most k! different I-cycles; we
then need to chose [ vertices to change colors, and there are at most n! choices. It is
straightforward to check that if o satisfies (3.10), then

nCo _ élogn
nke ios < logk—T55
as n — 0o. Therefore we have
o0
nmlCq 1
’I’YLll - 2
§ (nk) 4o S llog k— éllogn
ml:0 ]. — € 1-¢

Let

k 00
U:= H Z (k)i
1=

mp=

Since log(1 + z) < z for > 0, we have

0<loglU = Zlog 1+Z (nk) mule™ nmllco
m;=1
(n
a =2 m=1
k (elogk_%>l
< >
l

610 n\ !
:21_<logk: g5>

26 logn
62 log bk— =55+~

<
— 26logn dlogn

Then the proposition follows from (3.9). O
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Corollary 3.6. Assume § € (0, %), such that

1
lim log k — 51°g” -

n—0o -9

Assume (3.10) holds. Then

lim p(g;0) = 1.

n—oo

Proof. The corollary follows from (3.12) by letting By — oc. O

Proposition 3.7. Let Cy > 0 be defined by (3.11), and y € Qp, . n, be the true color
assignment mapping. Assume there exists u,v € [k], such that

(Cu - Cv)2 = CO,
and
(3.16) logmin{ny, m} o 5,

logn
Assume

4\ loglogn

3.17 =14+ =
(3.17) < - B) logn '
and

2 _ (1+6)Con
(3.18) 1logn
then

lim p(g;0) =0,

n—oo

where B is a constant independent of n as n — oo, while the total number of colors k, the
set of colors Ry, and Cy may depend on n.

Proof. For y € Qp, . n., a,b € [n] such that ¢, = y(a) # y(b) = ¢,. Let y(ab) ¢ Q,y,.omy, be

the coloring of vertices defined by

k

y(i) if i € [n]\ {a,b}
(3.19) y@y=L8¢, ifi=ua

Cu ifi=09

Then
tuw (Y™, y) — 1 = tuu(y,y) =0
tuu (W', y) + 1= tuu(y,y) = ny
tou (™, y) — 1 =tyu(y,y) =0
tow (W', y) + 1 =tyu(y,y) = ny.
and

tig W, y) = ti(y), ¥ (4,5) € ([K*\ {(u,u), (w,0), (v, ), (v,0)})
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Note that
1= p(§:0) > Pr (Unscintonsiartotore L 5™) — £(5) > 0]
p\y; = a,ben],cu=y(a)#y(b)=c, [J Y Y ’
since any of the event [f(y(®?) — f(y) > 0] implies § # y. By (3.6) we obtain

FG) = fy) = (Gy),GH™) — G(y)) + o (W,G(y") — G(y))
= —2n(cy — Cv)2 + (W, G(y(ab)) - G(Z/»-

So 1 —p(g;0) is at least

Pr (Ua,be[n],cuzy(a);ﬁy(b):cv [f(y(ab)) - f(y) > O])
> Pr (maxa,be[n],cu:y(a);éy(b):cvU<W7 G(y(ab)) - G(?J)) > 27100)

For i € {u,v}, let H; C y~!(c;) such that

min{ny, ny}

(3.20) \H;| = = h.

log?n
Then

1—p(g;0) = Pr (maXaEHu,bEHUU<W7 G(y“Y) - G(y)) > 2n(70>
Let (X,), Z) be a partition of [n]? defined by

X ={a=(aq,a9) € [n]Q, {a1, 0} N[H, UH,] =0}
Y ={a=(a1,a2) € [n)°, {o, 00} N [H, U H,)| = 1}
Z={a=(a1,m) € )% {a1, a0} N [H, U H,]| = 2}

For n € {X,Y, Z}, define the n x n matrix W, from the entries of W as follows

.o if (4,5) €n
Walh1) = {Wu’,j), if (i,5) € 1

For each a € H, and b € H,, let

Xy = (Wx, G(y)) — G(y))

Vab = (Wy, G(y?) — G(y))
Zp = (Wz,G(y™) — G(y))

Lemma 3.8. The followings are true:

(1) Xop =0 fora € H, and b € H,,.

(2) For each a € Hy, and b € Hy, the variables Yy, and Z4, are independent.

(8) Each Ya, can be decomposed into Yo + Yy where {Y, }aem, U{Ys}oen, is a collection
of i.i.d. Gaussian random variables.
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Proof. Note that for i, j € [n],

Cy — Cy ifi=a,j ¢ {a,b}
Cu — Cy if i ¢ {a,b},j=a
Cu — Cy ifi=0b,j¢{a,b}
(3.21) Gij('™) = Gij(y) =S o —cu  ifi¢{a,bli=b
2(cy —cu) if (i,5) = (a,b)
2(cy — ) if (4,7) = (b,a)

0 otherwise.

It is straightforward to check (1). (2) holds because Y N Z = ().
For s € H, U H,, let Vs C Y be defined by
Vs ={a=(aj,a2) €Y :a1 =s, or ag = s}.
Note that for s1,s2 € H, U H, and s1 # s2, Vs; N Vs, = 0. Moreover, Y = Usep,un,Vs-
Therefore
Vab = Z <Wy5, G(y(ab)) - G(y)>
seH,UH,
Note also that (Wy,, G(y(®) — G(y)) = 0, if s ¢ {a,b}. Hence
Y=Y, W(@)]-{[GW™) - Gy)(a)}
a€YaUYy

From (3.21) we obtain that for a = (a1, a2) € Y, and a1 # g,

@) - Gl(a) = { e ar=a

Cu — Cp If ag = a.

So, we can define

= Y W@l Y (W) § (e — )

a€Ya;01=a a€Vq;2=a

Similarly, define

=9 > [W@]- > [W()]p(e—cd)
a€)p;aa=b a€Vp;01=b
Then Yy = Y, + Y, and {Yi}sem,um, is a collection of independent Gaussian random
variables. Moreover, the variance of Yy is equal to (2n — 4h)C independent of the choice
of s. O
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By the Lemma 3.8, we obtain
(W, G(u™) = G(y)) = Yo + Yy + Zap
Moreover,

max Y, +Y,+Z,u > max (Yo +Yy,)— max (—Z4)

a€H,,beH, a€H, ,beH, a€H, ,beH,
= max Y, + max¥, — max (—Z)
acH, beH, a€H,, ,beH,

Recall the following tail bound result on the maximum of Gaussian random variables:

Lemma 3.9. Let Gy, ...,Gy be Gaussian random variables with variance 1. Let e € (0,1).
Then

Pr (‘1aXNGi > (1 —l—e)\/2logN) <N°°€

and moreover, if G;’s are independent, and €, N satisfy

N?(1 - ¢)y/2Tog N
V27 (14 2(1 — €)2log N)

(3.22) >1

Then

Pr( max G; < (1— e)\/210gN> < exp(—N°)

i=1,....N

The proof of Lemma 3.9 is in the appendix.
By Lemma 3.9 we obtain that when e, h satisfy (3.22) with N replaced by h, each one
of the following two events

E, = {m%[x Y, > (1 —€)y/2logh - 2Cy (n — 2h)}
acHy

Ey = {gn%xyb > (1 —€)y/2logh - 2Cy (n — 2h)}
CHy

has probability at least 1 — e~"". Moreover, the event

Es = { max  Zg < (1+€)\/4logh - maxVar(Zab)}
a€H, ,beH,

occurs with probability at least 1 — h~2¢. Then by (3.21) we have

VarZy, = [|Gy)) = G(y)lI} - Var(Y,) — Var(¥;)
= 47100 — 40(] (n — Qh)
= 8h(y

Hence the probability of the event

E:= { max (W, G(y®)) — G(y)) > 4(1 — €)y/log hCo(n — 2h) — 4(1 + e)\/m}

a€Hy,beH,
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is at least
Pr(E1NE;NEs) = 1—Pr(EjUE5UES)
> 1—Pr(EY) — Pr(ES) — Pr(ES)
> 1-2e " —p

Moreover, from (6.25) we obtain
4(1 — €)y/Co(n — 2h) log h — 4(1 + €)1/2Cohlog h

= 4,/Co(n —2h)logh |1 —€—(1+e¢) 2h ]

n — 2h

Y]

2
41/Co(n — 2h)logh [1 —e— logn]

By (3.16) we have

44/Co(n —2h)logh |1 — e —
\/ olm )log [ ‘ logn]
2 2log1l 9
> 4 Conﬁlogn<1—2> <1_Og0g”> [1_6_ ]
log™ n Blogn logn
Let
loglogn
3.23 _ loglogmn,
22 ‘ Blogn ’
then when n is sufficiently large, (3.22) holds with N replaced by h. Define an event
E: = W.G((y(®) - @
{aeéﬂéggmﬁ Gy = G(y))
2 2logl log 1 9
>4y [Conflogn (1 — —5— 1 2oglogn)) |, loglogn
log™n fBlogn Blogn  logn
Then E C E

When (3.17) and (3.18) hold, we have

Pr <maXa,b€{1,2,‘..,n},y(a)7£y(b)U<Wa G(y'™) - G(y)) > 200”)

~ 1
> Pr(E)>Pr(E)>1- ,
logn
as n is sufficiently large. Then the proposition follows. ([l

4. PROOF OF THEOREM 2.1 WHEN THE NUMBER OF VERTICES IN EACH COLOR IS
ARBITRARY IN THE SAMPLE SPACE

Now we consider the MLE in Theorem 2.1 whose sample space consists of all the possible
mappings from [n] to Ry, with no constraints on the number of vertices in each color.
Assume that for each z € Q, ni(x),...,ni(x) are arbitrary positive integers satisfying
(2.1) and denoting the number of vertices in the colors ¢y, ..., ¢, under the mapping z,
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respectively. For a mapping x € Q, let G(x) be defined as in (2.2). Let y be the true color
assignment mapping, and let T be defined as in (2.3).

Given a sample T, the goal is to determine the color assignment mapping y. Let g be
defined by (2.5). Then

j = argmin,eq (|G(2)|F - 2(G(2), T))
Let
p(y,0) =Pr(y=y)
For x € ), define
d(z) = |G(2)[|F — 2(G(2), T)

Then
p.) =P () < _min d(o))
Note that
(1) d)—d(y) =

IG@)IIF — 1GW)IIF — 2(G(y), G(z) — G(y)) — 20(W, G(z) — G(y)).
The expression above shows that d(x) — d(y) is a Gaussian random variable with mean
IG@)|IF = IGW)IE — 2(G(y), G(z) — G(y)) and variance 40?||G(z) — G(y)|%-
For i,j € [k], let S; j(x,y) be defined as in (3.2), and let ¢; j(z,y) = |S; j(x,y)|. Then

(4.2) Z tij(x,y) = ni(x), Viec k]
JE(k]

(4.3) > tig(x,y) =n(y), Vi€ k]
1€[k]

Then as in (3.5),
<G(3§‘), G(y)> = Z ti,jtu,v(ci - Cu)(cj - Cv)

i7]7u7ve[k:|
= 2 Z ti,j “Ci Gy Z tu,U -2 Z ti,j - G Z L‘uﬂ, < Cy
i,j€[k] u,vE[k] i,j€[k] u,vE[K]
= 2n Z Lij:Ci ¢ -2 an($)cz an(y)'cj )
i.j€[k] i€ (k] Jjelk]

where the last identity follows from (4.2) and (4.3).
In particular
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Let
(44)  Q(z,y): = E[d(z)—d(y)] = G@)|7 + IGW)F - 2(G(z),G(y))
2
= 2 Y (@ y)(e—e) =2 Y ni@e— Y ”j(y)cj]
i,j€(k] i€[k] JE(k]
= Z tu,v<$7 y)ti’j@f, y)(Cu —Cy — G+ Cj)2
u,v,i,j€ k]

Then

Var[d(z) — d(y)] = 40°Q(z, y)
For z € Q\ {y}

Pr(d(y) —d(z) > 0) = Pre.voi (5 > M)

20

Using the standard Gaussian tail bound Precar(o,1)(§ > ) < e~2%" we obtain
_ )

(z,
Pr(d(y) —d(z) >0) <e o
Then
(45) L po) <Y Prdly) — d(x) > 0)
zeQ\{y}
_ Q(z,y)
- Z PrfNN(Ovl) (g > 2%
z€Q\{y}
< Z o Qéjéy)
z€Q\{y}

Lemma 4.1. Let y € Q be the fized true color assignment mapping, and assume that x
changes over Q0. Under the constraint (4.3), Q(x,y) achieves its minimum if

tii = ni(y)
tii=0, ifij
and the minimal value of Q(x,y) is 0.

Proof. The lemma follows from (4.4). O

Let B be the set given by

k
B = {(t171,t271 - ,tkyk) € H {0, 1,... ,nj(y)}k : Zti’j(:ﬂ’y) = nj(y)} .

JE[K]

For a small positive number € > 0, let B, be the domain given by

Be=A{(ti1,.. . tkr) € B:ti; >ni(y) —ne, Vielk]}



EXACT RECOVERY OF COMMUNITY DETECTION IN K-PARTITE GRAPH MODELS

Then
_ Q=)
Z e 82 =J 4+ Jy
zeN\{y}
where
Q(z,y)
Jy = 3 e st
€Q\{y}: (1,1, k) E[B\Be]
and

_ Q=)
Jo = Z e &2 .
:(;EQ\{y}:(151,1,..,,tk7;c)€5’6

Fix a constant ¢ > 0. Define a region

(4.6) Re:={(v1,...,v) € R*: g v = 1, and m[i]gvi > c}.
1€
1€[k]

Lemma 4.2. Assume

(4.7) <”1 y o y>)e7zc

and

(tii(z,y), ... tei(z,y)) € B\ Be.
Then if € > 0 is small enough,
(4.8) Q(z,y) > 4Coe*n’
where Cy > 0 is given by (3.11).
Proof. When (t11(z,y),...,tki(z,y)) € D\ D¢, we have there exists 1 <i <k,

Z tji(z,y) = ne
J€lk],i#i
The following cases might occur

(1) there exists [ € [k], such that

tri(z,y) > mly) — ne
Then by (4.4)

Q(xa y) = Z tu,v(‘/L‘a y)ti,j(xa y)(Cu —Cy — G+ Cj)2
u,v,i,jE€[K]
> tale,y) Y tilzy)(e —¢)’
JElk],i#i
> (ni(y) —ne)eCon

> (c— €)eCon?,

where the last inequality follows from (4.7). Then (4.8) holds when € < .

23
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(2) For each b € [k], we have
Z Uq,b > €
a€lk],a#b

Without loss of generality, assume that ¢; > ¢ > ... > ¢;. Again by (4.4)

Q(xa y) = Z tu,v(x7 y)tl,] (33’, y)(cu —Cy—Ci + Cj)2
U7U7i7je[k]
> Y > i@ ytie(@ y) (e — e — ¢ + o)’
i€[k]i#£l jE(k],j#k
> 4006277,2

0

Proposition 4.3. Let y be the true color assignment mapping. Assume all the following
conditions hold:

e (4.7) holds;

e The total number of colors k and the total number of vertices n satisfy

log k
(4.9) BF

im
n—oo logn
e The quotient of the maximal difference of two colors and the minimal difference of
two colors is uniformly bounded for all n; that is,

(4.10) sup maxy, yelk] lcu — ¢l < o0
n minu,vE[kLu;ﬁv |CU - C”U‘

o there exists 6 > 0 (independent of n), such that

1-— 5)0011
4.11 2 o (1=9)Con
( ) < 4logn
where Co > 0 is defined by (5.11).
Then
Jim p(g;0) = 1.

Proof. First of all, for any fixed € > 0, if (4.11) holds, then o ~ o(y/n), by (4.7) and Lemma
4.2 we obtain that

C e2n2
J1 < Z S
z€Q\{y}
Note that
Q] < k"
Hence
2
n(logk—2logn iogn)
Ji <e ( 0 —0

as n — oo, for all € > 0 by (4.9).



EXACT RECOVERY OF COMMUNITY DETECTION IN K-PARTITE GRAPH MODELS 25

Now let us consider Jo. Let € © be an arbitrary color assignment mapping. Then z
can be obtained from y as follows:

(1) If for all (i,5) € [k]%, i # 4, tij(z,y) =0, then z = y.
(2) If & # y, find the least (a,b) € [k]? in lexicographic order such that a # b and
tap(w,y) > 0. Arbitrarily choose a vertex u in y~*(c,) and define y; € Q by

Ca if z=u
mlz) = {y(z) if z€n]\u
Then we obtain
tap(z,y1) +1=tp(x,y)
ta,a(xayl) —-1= ta,a(xay)
tij(z,01) = tij(2,9), V (6,5) € [k \ {(a,b), (a,a)}

Recall from (4.4) that

2
Q(z,y) =2n Y tijlw,y)(ci—c¢)? =2 | > tij(zy)(ci—¢)]| ;
i,j€[k] i,j€ (k]
hence we have
Q(l‘v yl) - Q(ZL‘, y)
2
= —2n(cq —cp)* +2 Z tij(z,y)(cu —c)| —2 Z tij(z,y)(cy — cv) — (ca — )
i,j€ (k] i,j€[k]

= —(2n4+2)(ca — c)* + 4(cqa — cp) Z tij(z,y)(ci —¢j)
i,j€[K]
< —(2n+2)00+016n,

where C7 > 0 is a constant given by

C1 = 4k+\/Cy max |cp, — cq
P,q€l[k]

Therefore

x, Q(z,y1) n
e_628(021/) < (Sdgl 6_8072[2004-%00—016}

Recall the distance in €2 was defined by (3.4). Note that

dQ(%Z/l) = dQ(‘Tay> -1

In general for r > 1, if we obtained y,., we can obtain ¥y, as follows:

or all (z,7) € , 1%+ 7, tii(x,y) =0, then x = y,.
1) If for all k1% i # j, ti 0, th
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(2) If x # y,, find the least (a,b) € [k]? in lexicographic order such that a # b and
tap(z,yr) > 0. Arbitrarily choose a vertex u in y, *(c,) and define y,41 € Q by

) Ca if z=u

Yr+1\2) =

i yr(z) if z€[n]\u

Then by the same arguments as before, we have
dQ(xvyTJrl) = dQ(xayT) —1

and

(4.12) G < R a2 i GO

By (3.4), we have for any z,y € Q, Dq(z,y) < n. Therefore if x # y, there exists
1 <1 < n, such that y; = x. By (4.12) we have

> Q=,yp) n
e Q8(§2y) < e_Tgle_ﬁ[Qco—"_%co_Cle]
6782—’2[200+%007016];

where the last identity follows from (4.4) and

_ Qz,yp) _ Qz,x)
e 802 —e 802 =—=1.
Therefore
oo
_ [(2n+2)Co—Cqen]l
(4.13) Jo < Z(nk)le 802
=1

In the sum, [ represents Dq(x,y). If Do(x,y) = [, then x can be obtained from y by
changing colors at [ vertices, each time there are at most n choices of vertices, and the
color of each chosen vertex is changed to one of the k choices of colors. That is where the
factor (nk)! on the right hand side comes from.

When o satisfies (4.11), we have

_ [(2n+2)CO2— Cqen]

(nk)e 8o - % )

< elogk_log"<%+n<176)_2<175)co
Then for (4.13) we obtain

) 1 Cqe
elog k_log”(m"‘nu—a) - 2(1—%)00 )

Jo

IN

1) 1 Cqe
1— elo'c’? k*IOg"<ﬂ+n<1ﬂs)*2(17%)0())

By (4.9) and (4.10), we can choose 0 < € < % independent of n, then lim,_,~ J2 = 0.
Then the proposition follows from (4.5) and the fact that 1 — p(g;0) < J; + Jo. O

Let Cy be defined as in (3.11). Let

A = {cy € [K], Tey € [K], st.(cy — c0)? = Co}.
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Proposition 4.4. Assume for all n,

1 “1(A,,
(4.14) log [y~ (Am)| >8>0
logn
where B is a constant independent of n.
Assume
4\ loglogn
4.15 o=(1+-=
@1 (3) S
and
1+ (5)Con
4.16 2 (1+9)Con
( ) o= 43 logn
then
lim p(g;0) =0,

n—oo

Proof. For y € Q, a € [n] such that y(a) = ¢, € Ay,. Assume ¢, € [k] such that (¢, —c,)? =
Cy. Define y(@ € Q as follows:

S0 (i) {y(z’) if i € [n] \ {a}

Co ifi=a

Then

tu,u(y(a)7y) = nu(y) - 1;

tv,u(y(a),y) = 1;

('™ y) = nily), if i€ K]\ {u};

tig(y@.y) = 0, if (i,5) € [P\ {(v,0)} and i # j
and for z,w € [n]

w—¢ ifz=a, w#a

(4.17) Cow(W' D) = Cow(y) = ey — ¢y if 2 #a, w=a

0 Otherwise

Note also that
1- p(g; J) > Pr (Uae[n},y(a)GAmd(y(a)) - d(y) < O]) )

since any of the event [d(y(®) — d(y) < 0] implies 7 # v.
By (4.1) we have
diy @) —d(y) = [GE)—GW)IE —20(W,G(y') ~ G(y))
(2n - 2)(Cu - Cv)2 - 20<W7 G(y(a)) - G(y)>
= (2n-2)Co —20(W,G(y'”) - G(y))
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So 1 —p(y;0) is at least
Pr (Ua,e[n],y(a)eAm [d(y'™) = d(y) < 0])
> Pr(maxecin) yo)e o (W, G = G(y)) > (n — 1)C)
Let H C y~'(A;,) such that

[y~ (Am)|

= h.
log?n

(4.18) |H| =

Then
1= p(F;0) = Pr (maxeeno (W, G(y") = G)) > (n = 1)C0)

Let (X,), Z) be a partition of [n]? defined by
X ={a=(a1,a9) € [n]? {a1, 0} N H| =0}
Y ={a=(a1,02) € [0]*,[{ar, a2} N H| = 1}
Z2 ={a=(a1,a2) € [n]’, [{o1, a2} N H| = 2}

For n € {X,Y, Z}, define the n x n matrix W, from the entries of W as follows
wiep-{iHEne

W(i,5), if (i,7) €n

For each a € H, let
X = (Wx, Gy') — G(y))
Y@ = (Wy, G(y“) — G(y))
2@ = (Wz,G(y') - G(y))

Claim 4.5. The followings are true:

(1) X1 =0 forae H.
(2) For each a € H, the variables Y% and Z*) are independent.
(3) {Y D} e is a collection of i.i.d. Gaussian random variables.

Proof. Tt is straightforward to check (1). (2) holds because Y N Z = 0.
For s € H, let s C V(@ be defined by

ys:{a:(ala()@)ey:al:s, OI'OLQ:S},

Note that for s1,s2 € H and s1 # s2, Vs, N Vs, = 0. Moreover, Y = Useg)s. Therefore
YO =3 (Wy,,Gy") - G(y))

seH
Note also that (Wy,, G(y®) — G(y)) = 0, if 5 # a. Hence
V=3 W) {[G(y) - Gy)la)}

a€la
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From (4.17) we obtain that a = (a1, a2) € YV, with a1 # ao,
coy—c¢, fag=a
Cu— Cy if a9 = a.

So,

a€Ya;01=a a€Va;02=a
and {Y(@} ey is a collection of independent Gaussian random variables. Moreover, the
variance of Y(® is equal to (2n — 2h)Cy independent of the choice of a. O
By the claim, we obtain
(W, G(y) - G(y)) =Y\ + 2
Moreover,

max Y@ + 2@ > max [y(“)} — max [Z(a)]
acH a€H, a€H,

By the Lemma 3.9 we obtain when e, h satisfy (3.22) with N replaced by h, the event

P o= {ma%y@ > (1—€)y/2logh-2Cy (n — h)}
ac

has probability at least 1 — e™""; and the event

— (a) . a
F = {gg?z <(1 +e)\/210gh max Var(Z( ))}

with probability at least 1 — h™¢. Moreover,

Varz@ = |G(y'Y) - G(y)][F — Var(V')
= (2n—2)Cyp—2Cy(n —h)
= Co(2h—2)
Hence
[FLNFCF

where the event

F = {?eaflc(w,e(y@) ~G(y)) > (1 —e—(1 +e),/Z:]11> V2log h - 2Co(n — h)}

Hence

Pr(F) > Pr(FANF;)=1—-Pr(FfUFy)>1—Pr(Fy)— Pr(Fy)
= Pr(F)+Pr(F)—1>1-h“—e™



30 ZHONGYANG LI

Moreover, by (4.14) and (4.18) we have

(1—6—(1+e),/2__;) V/2logh - 2Cy(n — h)

2logl 1 2
> 2\/Coﬂnlogn\/1—0g0gn\/1— 5 <1—6— )

Blogn log“n logn
Let

F
{meag[((W G(y ) — (y)>22\/Coﬂnlogn\/1—QIOgIOgn\/l— ! <1—e— 2 )}

Blogn log?n logn

Then F' C F.
Let € be given as in (6.27), then when n is sufficiently large (3.22) holds with N replaced
by h. When (4.15) and (4.16) hold,

Pr (maxaeyfl(Am)a(W, Gy — G(y)) > 2C’0n>

> Pr(F)>Pr(F)>1-—

logn’

as n is sufficiently large. Then the proposition follows. ([l

5. PROOF OF THEOREM 2.2 WHEN THE NUMBER OF VERTICES IN EACH COLOR IS
ARBITRARY IN THE SAMPLE SPACE

Now we prove theorem 2.2 when the sample space for the MLE is Q. Let y € € be the
true color assignment mapping. Assume that for each x € €0,

ni(z) = |7 (¢;)|, for i € [K]

are arbitrary positive integers satisfying (2.1) Let K(z) be defined as in (2.8), and R be
defined as in (2.9).
Given a sample R, we want to determine the the groups of vertices such that vertices
within each group have the same color under the mapping y. Let § be defined as in (2.11).
Again for ¢, j € [k], let S; j(z,y) be defined as in (7.25), and t; j(x,y) = |S; j(x,y)|. Then

>tz y) = ni(y); > tig(a,y) = nail); Y tij(zy)=n

iclk) jeElk] i,j€[k]
and
(K@), K@) = D La@se®) L@
a,be(n]
= Z tij(z,y) [n —ni(z) —ni(y) + tij(x, )]
i,5€[K]

(5.2) = 0’ =) (@) = Y P+ Y il y)]

ic[k] jek] i,j€[k]
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where

n—ni(x) —nj(y) + tij(z,y) = {u € [n] - x(u) # i, and y(u) # j};

and (5.2) follows from (5.1). In particular,

(K(y), K(y)) =n* = Y [n(y)

Jelk]

Hence from (2.11) we obtain

k

j = argmax,cq | Y _[nj()]* + 2(K(z), R)
j=1
Define
k
(5.3) g(x) = [nj(x))* + 2(K(z), R);
j=1
then
(5.4) 9(z) —9(y)
k k
= 20(K(z) = K(y), W) +2 > [ti(2,9)]* = > _[na(@)]* = > _[nj(y)]*.
i,j€lk] i=1 j=1

Note that g(x) — g(y) is a Gaussian random variable with mean 222-7]-6[,{:] [tii(z,9)]* —
Sialni(@)]? = S51[nj(y))* and variance 40%|[K () — K(y)||7-

Let
k k
(5.5) L(z,y) =Y i@+ @) =2 > [tij(z,y))?
i=1 =1 i.jelk]
Then it is straightforward to check that
(5.6) IK(z) — K(y)l|% = L(x,y)
Therefore

Lz, _L(=zy)
Pr(g(e) — g(y) > 0) = Preonion) (5>(y)) —

20

where the last inequality follows from the fact that if & ~ A(0,1), then for > 0, Pr(¢ >
2

x

x)<e z.

Definition 5.1. Fory € Q, let C(y) consist of all the x € Q such that x can be obtained
fromy by a permutation of colors. More precisely, x € C(y) C § if and only if the following
condition holds

e fori,j € [n], y(i) = y(j) if and only if (i) = 2().
We define an equivalence relation on € as follows: we say x,z € Q are equivalent if and
only if x € C(z). Let Q be the set of all the equivalence classes in €.
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We have the following elementary lemma:

Lemma 5.2. If z,2z € Q are equivalent, then

S i@yl = > [tz

i,7€[K] i,j€[K]
Proof. By definition if x,z € Q are equivalent, then there exists a permutation w of [k],
such that for all [ € [n], we have

(5.7) z(l) = w(x(1)).
Therefore for all ¢ € [k], the following two sets are equal:
(5.8) z71(E) = 27 (w(4)).
In other words, for any v € [n] and i € [k], x(u) = ¢ if and only if z(u) = w(i). Then we
have
tij (T, ) = tuw);(2,9)
by summing over all the i, j’s in [k], and using the fact that w is a bijection from [k] to [k],

we obtain the lemma. O

Lemma 5.3. Let y € Q be the true color assignment mapping. If x and z are equivalent
elements in €, then for any chosen sample W, we have

(5.9) 9(x) = g(2);
and
(5.10) L(z,y) = L(z,y).
Moreover, if y* € C(y), then
(5.11) L(z,y) = L(z,y")
Proof. From the definition (5.3) of g(x) we obtain
9(z) = 2(K(z),K(y)) + 20(K(z), W) + k [ ()]?

j
Recall that K; j(z) = 1 if and only if z(i) # x(j); if (i) = 2(j), K, j(z) = 0. Since z and
z are equivalent x(7) # x(j) if and only if z(7) # z(j), therefore

(5.12) K(z) = K(2).

1

Moreover, if z and z are equivalent and (5.7) holds, by (5.8) we obtain = € Qi1 (2) iy (2)
in particular this implies
k k k
D @) = I ()] =Y (=)
j=1 j=1 j=1
Then we obtain (5.9). The expression (5.10) follows from (5.12) and (5.6). The expression
(5.11) follows from (5.10) by observing that the expression (5.5) of L(x,y) is symmetric in

x and y. O
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Let
p(g,0) =Pr(g € C(y))
Then
- _p )
p(y,0) =Pr (g(y) > xeﬁ?@‘@)g(m)> ;
hence

~ _ L(z,y)
1—p(go) < Y Pr(glx) —g(y) 20) < Yoo e
C(z)e\{C(v)} C(x)e\{C(v)}

Lemma 5.4. For any x,y € Q, L(x,y) > 0, where the equality holds if and only if
z e C(y).
Proof. By (5.1) and (5.5) we have

(5.13) L(z,y)

= 2 Z Z 2 (1’, y)ti,jz (xv y) + Z Z tiy g (.CU, y)tlé,j (LL’, y) >0

i€lk] 1<j1<ja<k jEk] 1<in <ia<k
We first note that L(z,y) = 0 if z € C(y). Indeed, if z € C(y), then there exists a
permutation w : [k] — [k], such that £ = w oy. Then for all u € [k] satisfying z(u) = i, we
have y(u) = w™!(i). Then
tiw—1() = Ni(T);

ti; =0, Vjek\{w ()}

Therefore for any ji,j2 € [k] and ji < j2, at least one of t; ;, (z,y) and t; ;,(z,y) is 0.
Similarly for any 4,42 € [k] and i1 < ig, at least one of t;, ;(x,y) and t;, j(x,y) is 0. Then
L(xz,y) =0 by (5.13).

It remains to show that if L(x,y) = 0, then « € C(y). Note that if L(x,y) = 0, then

tijy (T, y)tij. (2, y) =0, Vi€ [k], 1 <j1 <j2 <k; and
tilvj(x’y)ti%j(x’y) =0, Vj € [k]7 1<y <in <k

Then for any fixed ¢ € [k], there exists exactly one j € [k], such that t; ; # 0; and for
each fixed j € [k], there exists exactly one i € [k], such that ¢; ; # 0. Then the lemma
follows. O

Let B be the set given by
~ 2 k
(514) B = {(tLl,tl’Q, e ,tk’k) S {0, 1, e ,n}k : Zti’j = n](y)} .
i=1

For a small positive number € > 0, let B, be the set given by

(515)  Be={(ti,. . ten) € B: Vi € [K],3) € (K], st by > ni(y) — e}
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Lemma 5.5. Let R. be defined in (4.6). When

(516) (tl,l(xvy)¢ s 7tk’,k’(x7y)) € B \ Bm

and (4.7) hold, we have
2
L .
(z,y) = —

Proof. When (5.16) holds, by (5.15) we have there exists ig € [k], such that

N4y (y) — max tj,io (JJ, y) > en.
JElk]

By (5.13), we obtain

L(x, > tiio(z, i — tiio(, >
(z,y) > ma jiio (T,y) | Mo () max jiio (T, ) ?

By (4.7), we have

Lemma 5.6. Let R, be defined in (4.0). Assume (4.7) holds. Let x € Q satisfy

(5.17) (m(iﬂ)j nz(fﬁ),m’nk(fb’)> € Roa
n n n 3

Fori € [k], let

5.18 tw(i).i(T,y) = maxt;;(x,y),

(5.18) (i), (T, Y) maxt; (z,9)

where w(i) € [k]. When e € (0,2%) and (t11(z,y), ... tii(z,y)) € Be, w is a bijection
from [k] to [k].

Proof. When (t11(x,y), ..., thi(z,y)) € Be, by (5.15) we have

maxt;;(x,y) > ni(y) —en, Vi€ [k].
JElk]
If there exist j1,j2 € [k], such that j; # j2, and
tjl,i(‘ra y) = tj2,i($a y) = math,i(xv y);
JE[K]
then

2e
m00) 2 i+ tias > 20a) — 200 > (2= 2 ) i)

where the last inequality follows from (4.7). But this is impossible when e < §. Therefore
w(7) satisfying (5.18) is unique for each i € [k], and w is a mapping from [k] to [k].

If there exist 4,j € [k] such that ¢ # j and w(i) = w(j) = | € [k]; then there exists
q € [k], such that ¢ # w(s) for all s € [k]. More precisely,

tos(z,y) # max trs(2,y) > ns(y) —en, Vs € [k].
re
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By (5.1) we have
(5.19) tgs(x,y) < en, Vs e [k].

Therefore

2
— < tq.s(x,y) = ng(x) < ken,

s€k]
where the first inequality follows from (5.17), and the last inequality follows from (5.19).
But this is impossible when € < % The contradiction implies that w must be a bijection
from [k], and the lemma follows. O

We have the following proposition

Proposition 5.7. Let R. be defined as in (4.6). Assume (4.7) and (5.17) holds. Recall
that k is the total number of colors. Here ¢,k may depend on n. Assume the following
conditions hold

log k

(5.20) nhﬁrgO m =0
If there exists 6 > 0 independent of n, such that
1-6 _
(5.21) 52 < 1 =9)[n(y) +n_1(y)]

4logn
then

lim p(7;0) =1
n—oo

Proof. Note that

_ L(zy)
Z e 8?2 < I3+ 1y
C)eQ\{Cy)}

—L(z,y)
13 = Z e 802

C(2) € (t1,1(2,9) st i (2,9) ) EIB\B],C(2)#C (y)

where

and

—L(z,y)
I4 = Z e 802y .
C(:v)Eﬁ:(tLl(w,y),...,tk,k(w,y))Gée,C(xﬁéC(y)
By Lemma 5.5, when (5.21) holds, we have

cen? logn

I3 < ke *PO-0)tng—1(w)]

Since

2n
(5.22) nk(y) +ne—1(y) < =
we have

(5.23) Iy < o (RS2
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Now let us consider ;. Assume € € (0,32%). Let w be the bijection from [k] to [k] as
defined in (5.18). Let y* € 2 be defined by

y*(2) = w(y(2)), Vz € [n].
Then y* € C(y). Moreover, x and y* satisfies
(5.24) tii(z,y") > ni(y*) — ne, Vi € [k].

We consider the following color changing process to obtain x from y*.

(1) If for all (j,i) € [k]?, and j # i, t;;(z,y*) = 0, then z = y*.

(2) If (1) does not hold, find the least (j,4) € [k]? in lexicographic order such that j # i
and t;;(x,y*) > 0. Choose an arbitrary vertex u € Sj;(x,y*). Define y; € Q as
follows

C; if z=u
=49
i) {y*<z> if = € [n]\ {u}
Then we have
(5.25)

'
(5.26) tij(@,y) = tj;(z,y*) +1
(5.27) tap(, 1) = tap(z,y") V(a,b) € (K \{(j, 1), (4,5)}) -

Therefore x and y* satisfies
ti,i(x)yl) > ni(yl) — e, Vi € [k]

From (5.11) and (5.13) we obtain

1

(L(ﬂ?,yﬂ—L(ﬂ?,y)) = §(L(x7yl)_L(x7y*))

N

= tji(z, ) thlivyl +tj5(z,y1) Ztgliﬂm — tji(z y1)t,5(@, v1)

I I#]
«Tyl Ztlzxyl jjxyl Ztl,]$y1
l#j I#j
— taley™) [ D tialwy) | + g, y) | D tale,y®) | = tiale,y*)t (v
I#i I#]

]ny Ztlzxy +t,]33y thjxy
I#5 I#5
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By (5.25) we obtain

t]zxyl Zt], $y1 t]zxy thll'y
l#i 1#1

tii(@,y1) [ng(x) — tya(z, )] — ti(x, y*) [ng(w) — ti(z, y")]
= tii(z,y7) + tii(x, 1) — ny(x)
Similarly by (5.26) we obtain

,]xyl th, 1’y1 t]]xy thlxy
I#j I#j

= "j( )—t”(a: Y1) —t ,](‘T y").
—tji(z,y0)t 5 (, y1) + (@, v )t (2, y") = =tz ) +t55(z,97) + 1

tji(x, y1) Ztlz z,y1) | =tz y") Ztl,z‘(%y*) = tji(z, y") —ni(y")
1] 1]

tig(zon) | Y tg(zoun) | =ty [ Dty | =niw*) =t y7)
I#j I#j

Therefore we obtain

L(z,y1) — L(z,y) = 2[n;(y") — ni(y") — 2t5,(z, y") + 2t54(x, y") — 1]
Then by (6.17),
L(z,y1) — L(z,y) < =2ni(y") — 2n;(y") + 8ne < —2(nk—1(y) + nk(y) — 4ne)
Therefore when (5.21) holds,

_Lew | _LGea) —l°g”(1_$)
(5.28) e 802 < e 802 e 1-¢ np_1W)+ng )

In general, if we have constructed y, (r > 1), we shall construct y,1 as follows.

(a) If for all (j,i) € [k]?, and j # i, t;;(z,y,) = 0, then z = y,.

37

(b) If (a) does not hold, find the least (j,i) € [k]? in lexicographic order such that j # i
and t;;(x,y,) > 0. Choose an arbitrary vertex u € S;;(x,y,). Define y,1 € Q as

follows

Ci if z=u
G
Yri1(2) {yr(z) if z € [n]\ {u}

Then if (6.17) holds with y* replaced by y,, then (6.17) holds with y* replaced by y,1.

By similar computations as above we obtain

_ L(=z,yr) _ L(z,yry1) _IOg"(1_¢>
(5.29) e 82 <e 8.2 ¢ 1-6 ng_1(y)+ng(y) )
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Recall that the distance Dgq in  is defined in (3.4). From the constructions of y,4; we
have
Da(z,yr+1) = Da(z,y) — 1.

Therefore there exists s € [n], such that ys = z. By (5.28) and (5.29) and the fact that
L(z,x) = 0 we obtain

__slogn _ 4ne
= ) (1 nk,l(y>+nk(y>)

Since any z in B. can be obtained by y be the color changing process described above,
we have

00 _llogn (1_ 4ne )
(5.30) L) (nk)le 0N Mo

=1
The right hand side of (5.30) is the sum of geometric series with both initial term and
common ratio equal to

(5.31) Vo= elogk_log"(%_(1—6>(nkff(6y>+nk<y>>)
By (4.7) we have

nk—1(y) + nx(y) > 2cn

Let
1)
(5.33) ezmin{;k,:} < %3

then from (5.23) and using the fact that ¢ < ¢, we obtain

(B se?
0< 13 < en(logk—lognmm(g,al—ﬁ))
Then from (5.20), when n is sufficiently large

3 logn
16 7

logk <

Since k£ > 2 we have

c3logn

n <logk —

as n — oo. Moreover, since ¢ < 1 from (5.20) we obtain

) < —nlogk — —o0,

. log k
lim =
n—oo c2logn

Hence when n is sufficiently large, we obtain
dc?l
n <log o 9¢ logn

< -nl —
16 )_ nlogk — —oo,

as n — Q.
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Therefore we obtain

(5.34) lim I3 = 0.

n—oo

Moreover, when €, V' are given by (5.33) and (5.31), from (5.32) we obtain

dlogn

0<V< eIng* 2(1-9)

By (5.20), for any constant 6 > 0 independent of n, lim,_,~ V = 0, therefore

v
(5.35) lim I, = lim —— = 0.

N 00 n—ooo 1 —V

Then the proposition follows from (5.34), (5.35) and the fact that 1 —p(g;0) < Is+1;. O

Proposition 5.8. Let R. be defined as in (4.6). Assume (4.7) and (5.17) holds. Here k
and ¢ may depend on n. Assume ny(y) > na(y) > ... > nk(y) and

log 1 () logc

(5.36) >14+——2>p>0, Vn,
logn logn
where B is a constant independent of n.
Assume
4\ loglogn

5.37 o=(1+-
and

1+ 0)[nk(y) + ni—1(y)]
5.38 2, |
(5.38) s 481ogn ’
then

Jim_ p(g;0) = 0.
Proof. For y € Q, a € [n] such that ¢;_; = y(a). Let (¥ € Q be defined by

y(@ (i) = {y(i) if i € [n], and i #a

Ck if 1 = a.

Then

the-1(y\ ), y) = 1;

te1h1 (U, ) = np1 () — 1;

tii(y' @, y) = niy); Yie k) {k -1}

ti; (@, y) = 0; ¥(i,5) € K2\ {(k,k — 1)}, and i # j.
and

ne(y@) = ni(y) + 1;
-1y ) = ni_1(y) — 1;
ni(y @) =ni(y); Vi€ [k]\ {k,k—1}.
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Moreover,

1= p(G0) 2 Pr (Uacpuny- (o0 l90®) = 9(v) > 0)

Since any of the event [g(y(®) — g(y) > 0] implies § # .
From (5.2) we obtain

(5.39) (K(y), Kuy“) —K) = > [t 9)* = D> [y ™)]* = —2n4(y)

Then from (5.4) we have

g ) —gy) = D )P =D @) +2K), Ky'™) —K(y)) + 20(W,K(y) — K(y))

i€ k] i€ (k]
= —2n4_1(y) — 2np(y) + 2 + 20 (W, K(yV) — K(y)).

Let Hj_1 C y~'(ck_1), such that

N —
(5.40) |Hjp_q| = & 12<y> — h.
log“n

Then 1 — p(y;0) is at least

P (Uae oy (e 9 ) = 9(y) > 0])
Pr (maxae[n]ﬂy (ck-1)? (W, Ky ) — K(y)) > np(y) + np_1(y) — 1)

> Pr

v

maxaer, (W, Ky )~ K(y)) > niy) + nxaly) 1)
Let (X,), Z) be a partition of [n]? defined by

X ={a=(a1,a9) € [n]? {a1, 0} N [Hyp_1] = 0}
Y ={a=(a1,a2) € [n]*, {1, 00} N [Hp]| = 1}
Z ={a = (a1,09) € [n]?, [{an, a2} N [Hy ]| = 2}

For n € {X,Y, Z}, define the n x n matrix W, from the entries of W as follows

0 if (i,5) € n

Walhn) = {W(z’,ﬁ, if (i,7) € 7

For each a € H;,_1, let
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Explicit computations show that

—1 ifi=a, and j €y (cg)

1 ifi=a, andj€y (ex 1),j#a
Kij(y“) —Kijly) = ¢ —1 if j=a, and i€y ()

1 ifj=a, andi €y (ex 1), i #a

0 otherwise.

Claim 5.9. The followings are true:

(1) Xy =0 fora e Hg_q.
(2) For each a € Hy_1, the variables ), and Z, are independent.

Proof. Tt is straightforward to check (1). (2) holds because Y N Z = {). O
For s € Hi_1, let Y* C Y be defined by
YVi={a=(aj,a2) €Y :a1=s, or ag = s}.

Note that for sy,s0 € Hip_1 and s; # s9, Y1 N Y%2 = (). Moreover, ) = Usen, ,V°.
Therefore

Vo= Y (Wy, K(y'”) - K(y))

SEH, 1

Note also that (Wys, K(y@) — K(y)) = 0, if s # a. Hence

Yo=Y [W()] {K@G) —K)l(a)}

ae)ye
Note that for o € V¢,

—1 if {oq, a0} Ny Her)] =1
K@) —K@)(@) =41 if {a,a0} N[y (cr1)] =2

0 else.
So,
> W(a)] - {KG™Y) - K@)(a)} = > [W(a)] - > (W (a)]
acya acYe{ar,a}Ny=1(ck)]=2 aeye{ar,az}Nly=1(c))=1

{Vs}sem,_, is a collection of independent centered Gaussian random variables. Moreover,
the variance of Vs is equal to 2(ng(y) + ng—1(y) — h) independent of the choice of s.
By the claim, we obtain

(W K(y“) —K(y)) = Vo + Za
Moreover,

max YV, + 2, > max YV, — max (—Z,)
a€Hy 1 a€Hy 1 a€Hg
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By Lemma 3.9 about the tail bound result of the maximum of Gaussian random variables,
if (3.22) holds with N replaced by h, the event

Ef = {ange}cxlya > (1—e)y/2logh -2 (ng(y) + np—1(y) — h)}

has probability at least 1 — e™*"; and the event

E5 = Z,<(1 2logh - Var(Z,
s {20000, o g e |

has probability 1 — h™¢.

Note that
(5.41) KG™). K@) -K@) = = 3 gy ™)+ )
o) -2 N
Moreover, by (5.39) and (5.41)
VarZ, = K@) - K@)lE - Var(Va)
= 2[mp—1(y) + ()] — 2 — 2 (np—1(y) + nx(y) — h)

= 2h -2

Let

E* = { max Vo + Zq > (1 —e—(1 +6)\/nk(y) ho h> V4log h(nk(y) + ni1(y) — h)}

a€Hj_1 +ng—1(y) —

Then E} N E; C E*. Moreover, by (5.40) and (5.36) we have

(1 —e—(1+ 6)\/nk(y) he h) VAlog h(ni(y) + ni-1(y) — h)

+np—1(y) —

> 9 <1 —e— 1+6> V/Blogn (ng(y) +nk—1(y))\/<1 1) <1 - mgbgn)

a log?n Blogn

Let E* be the event defined by

E*::{ S y“+za22(1_6_1+6> \/510gn(nk(y)+nk1(y))\/(1— . )(1—210glogn)

a€Hj_1 logn log2 n Blogn

Then E* C E*.
Let € be given as in (6.27), then when n is sufficiently large (3.22) holds with IV replaced
by h. When (5.37) and (5.38) holds,

Pr (maxaeHH@W, K(y@) — K(y)) > ni(y) + np_1(y) — 1) > Pr(E*) > Pr(E"),
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as n is sufficiently large. Moreover, we have
Pr(E*) > Pr(E}NE3)
> 1—Pr(EY) — Pr(E%)
> 1-—logn,

when n is sufficiently large. Then the proposition follows.
O

6. PROOF OF THEOREM 2.2 WHEN THE NUMBER OF VERTICES IN EACH COLOR IS FIXED
IN THE SAMPLE SPACE

We now discuss the MLE in Theorem 2.2 when the number of vertices of each color
in the sample space is fixed to be the same as the true value. Let y € Q,, . n, be the
unknown true color assignment mapping. Let K(y) be defined as in (2.8), and let R be
defined as in (2.9). For given sample R, let § be defined as in (2.11).

Given a sample R, the goal is to find the exact division of [n] into groups of vertices such
that all the vertices in the same group have the same color under the true color assignment
mapping y. Note that for all z € Q,, _,

k

IK@)E=2 Y nny,

1<i<j<k
which depends only on nq,...,ng, but is independent of x. Then we have
Y =argmaX,cq, . (K(z),R)
We define an equivalence relation on €, ., as follows:

Definition 6.1. Fory € Qp, ., let C*(y) consist of all the x € Qy,, . n, such that
can be obtained from y by a permutation of colors. More precisely, x € C*(y) C Qn,....n,
if and only if the following condition holds

e fori,j € [n], y(i) =y(j) if and only if x(i) = z(j).

We define an equivalence relation on Qy, . n, as follows: we say x,z € y, n, are

k
equivalent if and only if x € C*(2). Let Qp, ., be the set of all the equivalence classes in

in,.‘.,n

ke

It is not hard to check that for each z € Q,,, n,, C*(x) = C(z) N Qyp, ... n,, where C(x)
is defined as in Definition 5.1. Moreover, for z,z € Q, ., * € C*(z) if and only if there
exists a permutation w of [k], such that

and for any i € [k],
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where y € ,,, ., is the true color assignment function.
For each = € Q.. p,, define

(6.2) h(z) = (K(z), R)

Lemma 6.2. Lety € )y, . 5, be the true color assignment mapping. If x,z € Qy, . n, 18

such that x € C*(z), then

k

(6.3) K(z) = K(z);
and
(6.4) h(z) = h(z).

Proof. From (6.2) we see that (6.4) follows from (6.3). Recall that K; j(z) = 1 if and only
if x(i) = x(j); if z(i) # x(j), K; j(x) = 0. Since x and z are equivalent x(i) = z(j) if and
only if z(i) = z(j), therefore K(z) = K(z). O

Then

Note that
h(z) — h(y) = (K(y), K(z) — K(y)) + o(W,K(z) — K(y)).

The expression above shows that h(z) — h(y) is a Gaussian random variable with mean
(K(y), K(z) — K(y)) and variance o*||K(z) — K(y)|[3-

For i,j € [k], ,y € Qn,,..n,., let S;;(z,y) be defined as in (3.2). Let t;;(x,y) =
1S54z, 9)]- Let

Ulz,y) = —E[h(z) = h(y)] = (K(y), K(y) — K(z));
Then by (5.2) we have
(6.5) Ulz,y) =Y [nl? = Y [tz 9
i€[k] 1,J€[k]

and
IK(x) = K@)l = 2U(z,y).
FOI‘ xr G in,...,nk \C*(y)

Pr(h(z) — hy) > 0) = Prenon (52 l\f/;@)

Using the standard Gaussian tail bound Preear(o,1)(§ > z) < e_%“'g, we obtain

_U(=zy)

Pr(h(z) — h(y) > 0) < e 42
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Then
(6.6) 1-p@o) < Y Pr(h(x)—h(y) >0)
z€Q\C*(y)
< Z e Uizéy)
z€Q\C*(y)

Lemma 6.3. For any z,y € Qp, . n., Ul(x,y) > 0, where the equality holds if and only if
x € C*(y).

Proof. Note that

(67) Ule,y) = 5L(e,0)

Then the lemma follows from Lemma 5.4. U
Lemma 6.4. Assume x, 21,22 € Qp,.. n,. Assume z; € C*(z2). Then

U(z,z1) =Ul(x, 22).
Proof. The lemma follows from (5.11) and (6.7). O

Lemma 6.5. Let B and B, be defined as in (5.14) and (5.15), respectively. Let R, be
defined as in (4.6). Let x,y € Q... n,. Assume (4.7) and (5.16) hold. Then

CETL2

2k
Proof. The lemma follows from (6.7) and Lemma 5.5. O

Ulz,y) >

Lemma 6.6. Let y € Q,, . n, be the true color assignment mapping. Let R. be defined
in (4.6). Assume (4.7) holds. Let x € Qy, ., Fori € [k], let w(i) € [k] be defined as in
(5.18). Then
(1) when € € (0, %) and (t1a(x,y), ... thr(z,y)) € Be, w is a bijection from [k] to [k].
(2) Assume there exist i,j € [k], such that n; # nj. If
n; — nj

(6.8) €<  min
1, j€[k]:ni#n;

n
Then for any i € [k],
(6.9) i =y (@] =y (w(@))] = M.

Proof. Part (1) of the lemma is a special case of Lemma 5.6 when = € Q,,, .. Now we
prove Part (2) of the lemma. We shall prove by contradiction. Assume (6.9) does not hold,
then there exists ig € [k], such that

By (5.18), we obtain

Ny, = tw(i),i(xv y) > ni —en
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Hence we have

e i Ny (7)
n
But this is a contradiction to (6.8) and (6.10). The contradiction implies Part (2) of the
lemma. ([l

We have the following proposition

Proposition 6.7. Let R. be defined as in (4.6). Let y € Q. n,
assignment mapping satisfying (4.7), where ny > ng > ... > ny. Here ¢,k may depend on
n. Assume

be the true color

Cc

6.11 lim ——— =0
(6.11) n60 E(ng + nk—1)
log k

(6.12) lim —2% =0

k—oo logn
and

cn min { £ MmN ek nitn |- }
L 1,7€k],ni#En;
(6.13) lim ’ L s oo,
n—oo (nk‘—l + ’I’Lk)

—n;
n

where a > 0 is a constant independent of n; and min; je ),

nin; = 00 if n; = n; for

all i,j € [k]. If there exists a constant 6 > 0 independent of n, such that
(1— 5)[71]{,1 + nk]

6.14 2
( ) 7= 4logn

then
lim p(y;0) =1.
n—oo

Proof. Let

By (6.6), it suffices to show that lim,, ., I' = 0.

Let 0 < € < min {%7mini’j€[k]7ni7énj L } Then
' <TI'y + Ty
where
I = Z eiic(f?‘y)
C* (@)€DQny .ooony (B, (@9) st 1 (2,9) ) E[B\Be],C () £C (y)
and

~U(e.y)
(6.15) Ty = 3 e 4t
CH(2)EQny ...y (1,1 (@,Y) stk (2,y) ) EBe,C () £C (y)
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By Lemma 6.5, when (6.14) holds, we have

cen? logn

Pl < kne_2(1—6)k(nk_1+nk)

When

ni—nj

b

e n;—n;
cnlognmln{F,mmi’je[k]’ni#nj T’}
n| logk— 08 (ng_ 1 Tng)
Fl < e

. c .
€= —min-<§ — min
2 {k7i,j€[k],nﬁénj n

we have

Then by (6.12) and (6.13) we obtain that

(6.16) 0< lim I'; < lim e ™lo8% =,

n—oo n—oo
since k > 2.
Now let us consider I';. Recall that y € €,,, ., is the true color assignment mapping.
Let w be the bijection from [k] to [k] as defined in (5.18). Let y* € € be defined by

¥ (2) =w(y(z)), ¥z € [n].
Then y* € C(y). By Part (2) of Lemma 6.6, we obtain that for i € [k]
7@ =y (w™ @) = [y ()

therefore y* € €2y, . n,. Moreover, x and y* satisfies

)

(6.17) tii(x,y*) > ni(y*) —ne, Vi€ [k].

If x # y*, by Lemma 3.3, there exists an [-cycle (i1,...,7;) for (z,y*) with 2 <[ < k.
Then for each 2 < s < (I + 1), choose an arbitrary vertex ug in S;,_, ;. (x,y), and let
y1(us) = ¢, _,, where i;11 := 41. For any vertex z € [n] \ {ua,..., w1}, let y1(2) = y*(2).

Note that y1 € Qp, ... n,. More precisely, for 1 < s <[, we have

tigio (T, y") + 1=t ;. (x,y1);
tis7is+1 (33, y*) 1= ti37is+1 (‘Tv yl)
and
ta,b(x7 y*) = ta,b(xa yl)a V(a’ b) ¢ {(i57 is)v (i87 i5+1)}i:1'
From (6.5) and Lemma 6.4 we obtain
U(J:?yl) - U($7y) = U(:I:’ yl) - U(:l:a y*)
= = > [jlmy)P+ D [ty

i,j€[k] i,j€[k]

l
= QZ[ti57is+1 (‘/I"7y*) - tisﬂ's (fE,y*)]
s=1
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When (t11(x,9), .., ter(x,y)) € Be, we obtain

U(z,y1) —U(z,y) < QZ [2ne — n;, (y*)] < =1 (ng + ng—1 — 4ne)

Therefore

_U(z,y) _U(zyy)  Ungtng_q—dne)
(6.18) e 1?2 <e 4?2 e 102

If y1 # x, we find an ly-cycle (2 < Iy < k) for (z,y;), change colors along the l3-cycle
as above, and obtain another cycle assignment mapping y2 € €2y, . n,, and so on. Let
Yo := y, and note that for each r > 1, if g, is obtained from y,_; by changing colors along
an I, cycle, we have

DQ(xayr) = DQ(xayr—l) —

Therefore finally we can obtain z from y by changing colors along at most L%J cycles.

Using similar arguments as those used to derive (6.18), we obtain that for each r

_U@yr—1) _Uzyyr) _ r(ngtng_q—4ne)
e 402 S [ 402 (& 402

Therefore if y; = x for some 1 < s < L%J, we have

_Uzy) Uege)  rtrie1-4n9) (Siggs) L)
e 42 <e 402 e 402

By Lemma 6.3, we have U(xz,ys) = U(x,z) = 0, hence

_Uz,y) _ (nptng_g—4ne)l;
[} 402 S H [ 402

Note also that for any r; # ra, in the process of obtaining ¥,, from y,, _; and the process
of obtaining y;, from y,,_1, we change colors on disjoint sets of vertices. Hence the order
of these steps of changing colors along cycles does not affect the final color assignment
mapping we obtain. From (6.15) we obtain

& myl(ng+ng_q—4ne)

k
(6.19) 5 < H Z (nk)™le™ w2 | -1

On the right hand side of (6.19), when expanding the product, each summand has the form

ke

kmk(nk+nk7174ne)

. [(nk)kmk e 402

2m2(nk+nk 1 —4ne) 3 3mg(ng+ng_ 1 —4ne)
(nk)”™3e” 402

27n2(nk+nk_174ne)
where the factor [(nk)Qer_ 402 represents that we changed along 2-cycles my

B’Vn3(nk+nkilf4n5)
times, the factor {(nk)g’m?’e_ 402 represents that we changed along 3-cycles

mgs times, and so on. Moreover, each time we changed along an [-cycle, we need to first
determine the [ different colors involved in the I-cycle, and there are at most k' different
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l-cycles; we then need to chose [ vertices to change colors, and there are at most n! choices.
It is straightforward to check that if o satisfies (6.14), then

nptng g —de logk—losn (54
102 S e 8 1-96 nEptng_1 )

nke

When e < { and (6.11) holds, we obtain

log 4 log 4
oshtp5 (st ) tomk=tp (ot )

(&

Slogn
2(1-9)

log k—
6og

IN

When (6.12) holds, we obtain
_dlogn _dlogn
elogk 20-3) < ¢ 401-9) — ()
as n — oo.
Therefore we have

e mll(nk+nk7174ne) 1 1

S (nkymite R Y

llogn - - —
m;=0 llogkfﬁ((SfW 1—e 2(0-9)

—e
Let

mll(nk+nk7174e)

k oo
Se= [T | 30 mkymte™ w2
=2

k 0 myl(ng+n —4ne)

PR G B
0<log¥ = Zlog 1+ Z (nk)™e e
=2 1

mp=

! myl(ng+ng_q1—4ne)
(nk)™'e 102

M=
M8

IA
[~
N
('c‘
o
H‘g
| 2
3
N————

VAN
VR
Q)

|
o,
oz
| |02
2z
N———
o

— 0,

__d6logn 2 __d6logn
1— (e 41-9) 1—e 41-9)

(6.20) 0< lim Iy < lim €98% —1=0.

n—oo n—oo

as n — oo. Then

Then the proposition follows from (6.16) and (6.20). O
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Proposition 6.8. Assume n1 > ng > ny, and y € Qp, . n, 5 the true color assignment
mapping. Suppose that

log ny,

(6.21) >8>0, Vn,
logn
where B is a constant independent of n.
Assume
4\ loglogn
6.22 =1+
622 (3) S
and
1+ 0)[nk(y) + ni—1(y)]
5 2 (
(6.23) o° > 15logn ,
then

lim p(y;0) =0.
n—oo

Proof. For y € Qp,. ., a,b € [n] such that ¢, = y(a) # y(b) = cx_1. Let y(®) € Q
be the coloring of vertices defined by

N1y, N

y(i) if i € [n]\ {a,b}
(6.24) y =3¢, ifi=a

Cl ife=0

Then
te1k (W, y) = 1 =tr_1a(y,y) =0
tr1 k1Y) F 1=t 1 k1 (y,y) = g
tee—1 (', y) = 1=ty p_1(y,y) =0
tre (@ y) + 1 = tri(y,y) = .
and

ti,j(y(ab)7y) = ti,j(y)’ v (Z>]) € ([k]2 \ {(kv k)v (kvk - 1)? (k - 1a k)a (k - 17k - 1)})
Note that

1- p(?; 0) > Pr <Ua,b€[n},ck:y(a)géy(b):ck,l [h(y(ab)) - h(y) > O]) )

since any of the event [h(y(®?)) — h(y) > 0] implies 7 # y. By (5.2) we obtain

)
h(y' ™) —h(y) = K@), Ky“)-K@y) + (W, Ky") - K(y))
= > [ =Dl + o (W Ky ™) — K(y))

i,j€[k] i€[k]
= 4—2ny, — 2041 + (W, K(y») — K(y)).



EXACT RECOVERY OF COMMUNITY DETECTION IN K-PARTITE GRAPH MODELS

So 1 —p(y;0) is at least

Pr (Ua,be[n],ck:y(a)#y(b):ck,l [h(y(ab)) - h(y) > 0])

> Pr (maxa,bé[n],ck:y(a);éy(b)zck,lU<Wa K(y(ab)) —K(y)) > 2(nk +ng-—1 — 2))

For i € {k — 1,k}, let H; C y~*(c;) such that

N

(6.25) |H;| = = h.

log?n
Then
1—p(y;0) > Pr (maxaeril’bera(W, K(y(ab)) —K(y)) > 2(ng + ng—1 — 2))
Let (X,), Z) be a partition of [n]? defined by
X ={a=(a1,a9) € [n]? {1, 0} N [Hp_1 U Hy] = 0}
Y ={a=(a1,02) € [0, [{a1, a2} N [Hy—y U Hy)| = 1}
c In]?

Z ={a=(ar,a2) € [n]", [{a1, a2} N [Hp—1 U Hi]| = 2}

For n € {X,Y, Z}, define the n x n matrix W, from the entries of W as follows

Lemma 6.9. The followings are true:

(1) X =0 fora € Hi, and b € Hy_;.
(2) For each a € Hy and b € Hy_1, the variables Vop and Zq are independent.

(3) Each Y4 can be decomposed into Y, +Yy, where {Y, }acm, U{Ys }oem,_, is a collection

of i.i.d. Gaussian random variables.

51



52 ZHONGYANG LI

Proof. Note that for i, j € [n],

1 ifi=a,j€y ), and j # a.
—1 ifi=a,jcy Yep1)
-1 ifi=b,j€y (cp)
1 ifi=bjcy cr_1)and j#b
(6.26) Ki’j(y(@b))—Km(y): 1 ifj=aicy(c), and i # a.
—1 ifj=a,icy cp1)
—1 if j=b,i €y Hcp)

if j =b,i €y Ycp_1) and i #b

1
\ 0 otherwise.
(

It is straightforward to check (1). (2) holds because Y N Z = ().
For s € Hi_1 U H, let Y5 C Y be defined by
Vs ={a=(a,a2) €Y :a1 =s, or ag = s}.
Note that for s1,s2 € Hi_1 UHj and $1 # sa, Vs, NVs, = 0. Moreover, ) = UseH, UHLYs-

Therefore

Y=Y, (Wy, Ky)-K(y))

SEH,_1UHy
Note also that (Wy,, K(y(®) — K(y)) =0, if s ¢ {a,b}. Hence
Y=Y W@ {Ky™)-K@)a)}

aeyauyb

From (6.26) we obtain that for a = (a1, a2) € Y, and oy # g,

1 if {o, e} Ny~t(er)| = 2.

[K(y) — K(y)](a) = {_1 if [{a1, 00} Ny~ Heg—1)] = 1.

So, we can define

Y, = > W) - {K ™) - K(y)l(e)}
a€a
— 3 [W(a)] - > [(W(a)]
a€Va;|{or,a2}Ny=1(ck)|=2 a€Va;l{ar,a2}Ny=(ck_1)|=1

Similarly, define
Y, = > (W ()] — > (W (a)]
a€lp;Ha1,a2}ny=(cp—1)|=2 a€ly;{a1,a2}ny=1(c)|=1

Then Yo, = Yo + Y3 and {Ys}sen, ,um, is a collection of independent Gaussian random
variables. Moreover, the variance of Y; is 2(ng + ngp—1 — 2h) independent of the choice of
s. O]
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By the Lemma 6.9, we obtain
(W.K@y') —K(y)) = Yo+ Y5 + Zap

Moreover,
max Y,+Y,+Z,p > max Y,+Y,) — max —Zab
aGHk,bEHk_l @ @ aGHk,bGHk_l( @ ) aEHk,bEHk_l( @ )
= max Y, + max Y, — max  (—Zu)
(ler bEHk_l aEHk,bEHk_l

By Lemma 3.9 we obtain that when e, h satisfy (3.22) with N replaced by h, each one
of the following two events

Fy = {D’EIE;IXYQ > (1 —e)v/2logh-2(ny +np_1 — 2h)}
a€Hy

Fy = {bn}lax Y, > (1—e)\/2logh-2(ng + njp_1 — 2h)}
€

k-1

has probability at least 1 — e~"". Moreover, the event

Fy .= Zap < (1 4logh - Var(Z,
3 {aeHiI}b%);Ikl ob < (14 €)y/4log h - max Var( ab)}

occurs with probability at least 1 — h=2¢. Then by (6.26) we have

VarZ,, = HK(y(ab)) — K(y)H% — Var(Y,) — Var(Y;)
= 4(nk—|—nk_1) —6—4(nk+nk_1 —2h)
= 8h—6

Hence the probability of the event
F* =

{ max (W, K(»™) —K(y)) > 4(1 — €)\/log h(ny + nj_1 — 2h) — 4(1 + e)\/<2h — g) log h}

aEHk,bEHk_l
is at least
Pr(FiNEFyNEy) = 1-Pr([F]°U[F]°U[F5]9)
> 1= Pr([F7]°) = Pr([F3]°) — Pr([F5]9)
> 1-—2e M —p2

Moreover, from (6.25) we obtain

4(1 — €)\/log h(ny, + ng_1 — 2h) — 4(1 + e)\/<2h - ;)> log h

2h — 3
ng +ng_1 — 2h

= 4\/(nk+nk,1 — 2h)logh 1—6—(1+6)\/

v

4 _1—2h) 1 1—€—
V(1 + g h)Ogh[ € logn]
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By (6.21) we have

2
4\/(nk+nk_1—2h)logh |:1—6— ]

logn
2log 2
> 44/ plogn(ng + ng—1 — 2h) 1 2ososn 1—e—
Blogn logn
Let
loglogn
6.27 ==

then when n is sufficiently large, (3.22) holds with N replaced by h. Define an event

a€H ,bEH 1

24\/510gn(nk+nk_1 —2h) <1_ Ogog”) {1— 08 08N H

.o { max (W, K(y) — K(y))

Blogn Blogn B logn
Then F* C F*
When (6.22) and (6.23) hold, we have

Pr (maXa,bE[n],y(a)iy(b)0<Wa G(y(ab)) - G(y)> > 2(”16 +Ng—1 — 2))
1
logn’

> Pr(F*)>Pr(F)>1-

as n is sufficiently large. Then the proposition follows.

7. COMPLEX UNITARY MATRIX WITH GAUSSIAN PERTURBATION

Now we consider the community detection problem when the observation is a complex
unitary matrix plus a multiple of a GUE or GOE matrix. In the former case, we prove a
threshold with respect the intensity o of the GUE perturbation for the exact recovery of
the MLE. In the latter case, we develop a “complex version” of SDP algorithm for efficient
recovery, and explicitly prove the region of the intensity of the GOE perturbation for the
exact recovery of the SDP.

7.1. GUE perturbation. In this section, we prove Theorem 2.4. Recall that y € ©4 is
the true color assignment function satisfying Assumption 2.3. For x € O 4, define

r(x) = R(U,P(x)).
Then
(7.1) r(z) —r(y) = R[(P(y),P(z) = P(y)) + o(We, P(z) — P(y))]

which is a real Gaussian random variable with mean R[(P(y), P(z) — P(y))], and variance

16* 3" {1 = RE@()y )y ()]}

1<j
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Moreover,
R(P(2),P(y)) =n+2 Z Rlz(0)z(5)y(0)y ()]
Hence -
RI(P(y), P(z) = P(y))) = =23 _[1 = Rz (@)z()y(0)y ()]
Let -
(7.2) J(@,y) = —Elr(z) —r(y)] =2 ;[1 — Rl (i) (7)y()y ()]

Therefore for x € O 4

Pr(r(z) =r(y) > 0) = Preevon (5 > W) <e it

Lemma 7.1. For any z,y € O 4, J(z,y) > 0; J(x,y) = 0 if and only if there exists a fized
angle «, such that e%x =y.

Proof. First of all, J(z,y) > 0 follows from the fact that ‘x(z)x(g)y(z)y(g)} = 1. Moreover,

J(x,y) = 0 if and only if for any 1 < i < j < n, z(i)z(j)y(i)y(j) = 1. Then the lemma
follows. O

Then

Lemma 7.2. Ifz,z € O4 such that x € §(z), then
(1) P(x) =P(z).
(2) r(z) = r(2).
Proof. Note that if x € 6(z), then P(z) = P(z). Then r(x) = r(z) follows from (7.1). O

Lemma 7.3. If z,y,y € ©4 such that y € 6(y'), then
J(z,y) = J(x,y).
Proof. The lemma follows from (7.2) and Part (2) of Lemma 7.2. O

By Lemmas 7.1 and 7.2, we obtain
A A
;0)=Pr|r > max r(x
ki) =P fr(y") > _ax r(o)
Hence
A _J(=zy)
(7.3) 1—p(y*;o) < Yo e
0(z)S[04\0(y)]

For i,j € [k], let

(7.4) Sijxy)={1<1<n:z(l)= eidi7y(l) = eidj};

i.e., S; j(x,y) consists of all the vertices which have color €l% in 2 and color €i% in y.
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Let t; j(x,y) = |Sij(x,y)|. Again t; j(x,y) satisfies (4.2) and (4.3). We shall now define
a distance function on ©.

Definition 7.4. Let Dg : © x © — N be the distance function on © defined as follows:
forx,z €0,

Dg(x,z) = Z tij(x, z).

i,j€[k] i)
From (7.2), we obtain
Jy) = D tigl@y)tpg(e,y)[L — cos(~di +dy +d; — dy)]
1,5,0,9€ k]
2n(p+7—q—1
= Z tij (2, y)tpq(z,y) [1 —cos < ( k )>]
1,3,0,9€ k]

When p,q,i,j € [k], p+ 7 —q—1i € [—(2k — 2),2k — 2]; hence cos (W) =1 if and
only if p+j—q—1i€{—k,0,k}. Therefore,

(7.5) J(x,y)
_ 3 ti g (@ Y)tpq(@,y) {1 - cos (mp H}c_ - 1))]

By Assumption 2.3,
ni(x) =na(z) = ... =nk(x) =n1(y) =na(y) = ... = nk(y) =

Let D be the set defined by

R nyk? n n
D: (t1’177tk7k)€{0717g} Ztl’]:E7Zt’L’j:%

FE[K] ick]
For € > 0, let

(76) ﬁg = (t171, - 7tk,k) S ﬁ : Z ti,jtp,q < 6712
Then we have

_J(=zy)

(77) Z e 402 < fl + jz
0(x)C[0a\0(y)]
where
~ —J(z,y)
I = Z e {102y .
0(x)SOANO(Y): (t1,1,0-stk,k ) ED\De
and
~ —J(z,y)
(7.8) I = 3 e 107

9($)§®A\9(y):(t1’1,...,tk,k)Eb5
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Lemma 7.5. Assume

. en? B
Jm G =
Then we have
lim I, = 0.
n—oo

Proof. From the definition of the domains D and 156, as well as the expression (7.5), we
obtain that when (u1,1,...,ux%) € D \ D,

J(z,y) > en {1 ~ cos (T)] |

Then the lemma follows. [l
From (7.5), we obtain

£l
=1

Jo) =3 ) bl |1 cos (47

u=1{i,j,p,q€[k], ((p+j—q—i) mod k)e{uk—u}}
Lemma 7.6. For each x € © 4 satisfying (t1,1(x,y), ..., tex(z,y)) € Dy, there exists y €
0(y) such that

(7.9) : Y tijla,y) < (k- 1)V2e

i,j€[k],i#]

In particular, this implies that

1 /
i€[k]
and for each i € [k],
1 1
(7.11) —tii(z,y) > = (k= 1)V/2e.
Proof. From the definition (7.6) and the fact that _; ;cpy ti,j(%,y) = n, we obtain
> tig (2, y)tpg(w,y) > (1= e)n®;

which is the same as the following inequality

k—1

(7.12) Z tij(z,y)| > (1—en?

=0 [[i,jelk],(i—j) mod k=]

Let a = v/2e. Again using the fact that > ijemw tig(@,y) = n; if there exists I1,1y €
{0,...,k—1} and I; # Iy and

min > tij(z,y), > tij(z,y) ¢ = an;

li,j€[k],(i—5) mod k=l1] li,j€[k],(i—7) mod k=ls]
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then
k-1 12
Z tij(z,y)
=0 |[i,j€lk],(i—j) mod k=l] ]
k—1 12
< > tij(z,y)| — > tij(@,y)| - >
=0 [i,j€[k],(i—j) mod k=l] i [i,j€lk],(i=j) mod k=] [i,j€[k],(i—5)
< n?—a*n?® = (1 - 2¢e)n?
which is a contradiction to (7.12). Hence there exists at most one [y € {0,1,...,k — 1},

such that
> tij(z,y) = an.
[i,je[k],(i—j) mod k=l0]
Then for and [ € {0,1,...,k—1}\ {lo}
Z tij(z,y) < an.
[4,5€[k],(i—7) mod k=l]

Since Ei,je[k] tij(x,y) = n, we have

mod k=ly]

Z tij(z,y) = Z tij(@,y) — Z Z tij(z,y)

[i.j€[k],(i—j) mod k=lo] i,j€[k] ([e({0,1,...k=1}\{lo})] [i-j€[K],(i—j) mod k=]
> [1—(k—1)a]n

Let ¢ = e@y, then (7.9) and (7.10) follows. To obtain (7.11), note that
1 1 n
t“ z,y') Z tij(z,y') Z tij(z,y') > T (k — 1)V 2e.
" i " jein it

Then the lemma follows. O

Proposition 7.7. Let y € © 4 be the true color assignment function satisfying Assumption
2.3. Let k be the total number of colors and n be the total number of vertices. Assume

logk

7.13 li
( ) nl—>rgo logn

If there exists § > 0, such that
(1—14) [n(1 — cos 2F)]

14 2
(7.14) < 2logn

then

lim Pr(y® € 6(y)) =1

n—oo
Proof. For given x € © 4, such that (t11(z,y), ..., thr(x,y)) € D., and z ¢ 6(y), by Lemma
7.6, let ¥’ € O(y) such that (7.9) holds. By Lemma 3.3, there exists an [-cycle for (z,y’)
with 2 <[ < k.

tij(z
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Then for each 2 < s < (I 4+ 1), choose an arbitrary vertex us in S;,_, ;. (z,y), and let
y1(us) = €%s—1 | where i, := ;. For any vertex z € [n]\ {us, ..., w1}, let y1(2) = y/(2).
Note that y; € © 4. More precisely, for 1 < s <[, we have

(715) ti&is (x7 y/) + 1 - ti57is (;C? y1)7
(716) ti87is+1 ('1‘" y/) - ]‘ = tis,is+1 (':E’ yl)
and

tap(2,y') = tap(z,91), V(a,0) ¢ {(is,is), (is,iss1) Yooy
Let
A= {(isyis), (isyis41) Yooy
From (7.5) and Lemma 7.3 we obtain
J(@,y1) = J(2,y) = J(@,01) = J(2,9)
= Z [ti,j(t'”: y)tpq(z,y1) — tij(x, y’)tp,q(x, y/)] (1 — Cos (27r(p i j}f_ - Z)>>

= Bi1+ By+ B3+ By + Bs + Bg + Br + Bs.

Here
l / / 2m(p — q)
By = Y [tiais (@ y1)tpq (2, 1) = tiyi (2,9 )tp g (2, 1)) <1 — cos <k:>>
s=1p,q€[k],(p,)¢A
: / / 27(p +ds41 — q — is)
By = D Tt @y g (3, 1) = by (2,0 Vo g (2,1)] <1 — cos < k >)
s=1p,qelk],(p,9) A
l / ’ 27T(j — 1)
By = Z Z [tig (@, 1)t (2, y1) — tij(2,y )i (2, 9)] (1 — cos (k)) =B

i,j€[k], 5,5 A s=1
27(is +J — G541 — 1)

l
B, = S0 i@y tisien (@, y1) — tig (2,6 iy (2,0)] (1 — cos ( ? )) = By

i,J€[K],1,j¢A s=1

l l
Bs = > [t @yt (@) — tii, (2,9 )i, (2,9)] (1 = cos0) =0
s=1r=1

! l . .
21 (4 — ¢
Bs = > > [tivi(@yn)tivipe (z,01) = tigin (@, 4 )iy iy (2, 9)] <1 — cos <( - ? TH)))

s=1r=1

1o . .
27 (1 —1
Br = > tisis @ y) i, (2,91) = tigip (2,4 iy i (2, 9)] (1 — cos <( S+kl S)>> = Bs

s=1r=1

l l . . . .
2 (4 — byl + a1 — 1
Bg = Z Z [ti57is+l (z, yl)tir,ir+1 (z,y1) — L2 (@, y/)tir7ir+1 (z, y/)] <1 — COos < (& = A = S)>>

s=1r=1
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By (7.15) and (7.16) we have

B =1 tpq(z,9) (1 — cos <27r(pk—q)>>
p.q€lk],(p.g)EA

When (t11(z,y), ..., thi(z,y)) € D., by Lemma 7.6 we obtain
0< By < 2(k—1)V2en.

Similarly,
l ' )
S Y M ) (R e )
s=1 p,q€lk],(p,q)¢A
Then
l , 27T(i5+1 - is)
By < = >, tpplwy) (1—cos (T —
s=1 pe([k]\{i1,..,i1})
l ; 1
(k—Dn 27 (g1 — 1s)
_ B 2m(ls1 — Us) _
< - SZ:; 1 — cos - + 2I(k 1)\/%71
1 1 ) , 27’[’(er - irJrl)
Bs = Y > [~tii(y) +ti i (x,y) — 1] (1 - cos Tk

s=1r=1
l

r 0 .T_ .T
= -] 1(1—COS< ( kl-i-l >>+lztlrﬂr+1 ZL‘y (1_COS <7T(Zk'5-|-1)>>

By Lemma 7.6 we obtain

= <1 —cos( m(ir ;“‘*”)) +2U(k — 1)V2en

r=1
_lgil (1 — cos (W)) +20(k — 1)v2en

1o . . . .
27 (tp — tpg1 + 10 —1
Z Z bigyior (T, Y ") —ti,, i1 (T,Y ) - 1] <1 — COs ( (& H_lk Az S)>>
By Lemma 7.6 we obtain
0> Bg > —4l(k — 1)nv/2e — 2I?

Then we have

J(z,y1) — J(z,y) < [16[( —1)v2e — 21 <1 - coszl:)] n.
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Therefore
(7.17) i) ) o [2(1-cos 27 ) ~161(k—1)V2e]

If y; # 2, we find an ls-cycle (2 < Iy < k) for (x,y;), change colors along the lo-cycle as
above, and obtain another cycle assignment mapping yo € © 4, and so on. Let gy := y, and
note that for each r > 1, if y, is obtained from y,_1 by changing colors along an I, cycle,
we have

D@(:anr) = D@(xyyrfl) -1

Therefore finally we can obtain z from y by changing colors along at most bJ cycles.
Using similar arguments as those used to derive (7.17), we obtain that for each r

J(x,yp_ T,Yr n
o (4"?2 1) < e_J(4Olg )e_m[Ql (1 Cos—) 161, (k—l)\/ﬂ]

Therefore if ys = x for some 1 < s < L%J, we have

_ J(z,y) _ J(z,ys) _L[Q(l cos 2™ ) 16(k— 1)\5][2;111']

e 402 S e 402 [ 402

y (7.2), we have J(x,ys) = J(x,z) = 0, hence
. Jizé/) < He 402 1 —cos =& ) 16(k— 1)\/>]
€ls]
Let

2
Ve 1= 2 <1 — COS ;) —16(k — 1)V/2e.

Note also that for any r; # ra, in the process of obtaining y,, from y,,—; and the process
of obtaining y,, from y,,_1, we change colors on disjoint sets of vertices. Hence the order
of these steps of changing colors along cycles does not affect the final color assignment
mapping we obtain. From (7.8) we obtain

k 9]
A nmylvye
(7.18) I < Y (nkymite e | — 1
=2 ml=0

On the right hand side of (7.18), when expanding the product, each summand has the form

kmpnye

. [(nk)km" e 402

2mon~ye 3mgnye ]

[(nkypmee 57 [(nkymse 5

2monye

where the factor [(nkz)Qer* 102 } represents that we changed along 2-cycles ms times,

3mgnye
the factor [(nk)3m3ef 102 ] represents that we changed along 3-cycles mg times, and

so on. Moreover, each time we changed along an I-cycle, we need to first determine the
| different colors involved in the I-cycle, and there are at most k! different I-cycles; we
then need to chose [ vertices to change colors, and there are at most n! choices. It is
straightforward to check that if o satisfies (7.14), then

e log k— élogn+ 8(k— 1)\/2102an
nk€7402 < e (1— 5)(1 cos - ) .
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as n — 0o. Therefore we have

o0

I _nmll"/e ]_
5™ (it <
— _dlogn 8(k—1)v2elogn
m;=0 - el <1ogk T +<15)(1COS%)>
Let
. k > nmy e
U:= H Z (nk)™le™ a0
=2 \'m;=0
When (7.13) holds, let
1
€:= —
Vn
Then when o satisfies (7.14)
Ye dlogn
402 — 2(1 =)
when n is sufficiently large.
Since log(1 + z) < z for x > 0, we have
~ k > nmylye
0<loglU = Zlog 1+ Z (nk)™le™ 12
=2 m;=1
k © nmylye
<33 e
=2 mlzl
( _dlogn )l
k e 2(1-9)
S Z Slogn l
=21 _ <e_2(1—6)>
_dlogn
1-6
¢ —0

Slogn __dlogn
(1 e 1% ) (1 s 2<16>>
as n — oo. Hence we have lim,, fg = 0. By Lemma 7.5, lim;,— oo fl = 0. Then the

proposition follows.
O

27i

Proof of Theorem 2.4(b). For y € ©4, a,b € [n] such that 1 = y(a) # y(b) =e* . Let
y(9) be the coloring of vertices defined by

y(i) ifie{1,2,...,n}\ {a,b}
(7.19) yO(i) = {

*® ifi=a

e
1 ifi=»5
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Then

o [r(y ™) — r(y) > 0)
a,bE[n],l:y(a);ﬁy(b):eQT[r(y ) ’l“(y) ] ,

since any of the event [r(y(®)) — r(y) > 0] implies y* # y. Recall that
r(y“) —r@y) = (P),P“Y) -P(y) +o(W,Py"“") - P(y))

= —4(n—2) (1 ~ cos 2}:) —2 (1 — cos 4;) +0(We, P(y1Y) = P(y)).

1 —p(yA;a) > Pr (U

Let
2 4
E(n):=4(n—2) (1 — co8 ;) +2 <1 — cos ]:>
For I € {0,1}, let H; C 3! (e%) such that |H| = logLQn = h. Then

L= plyi0) > Pr (masacsny e o (W, P) — P(y) > E(m)
Let (X,), Z) be a partition of [n]? defined by
X ={a=(a1,09) € 0% {a1, a0} N [HyUH{] = 0}
Y ={a=(a,m) € [n)? |{a1, a2} N [HyUH]| = 1}
Z={a=(a1,m) € [n]? [{a1, a0} N [Ho U Hy]| = 2}
For n € {X,Y, Z}, define the n x n matrix W, from the entries of W as follows
Woelif) = {0 e
We(i,5), if (i,5) €n

For each a € Hy and b € Hy, let
Xap = (W o, P(yY) — P(y))
Yar = (Wy,e, P(y'Y) — P(y))
Zay = (Wze, P(y'™) - P(y))
Claim 7.8. The followings are true:
(1) Xy =0 fora € Hy and b € H;.
(2) For each a € Hy and b € Hy, the variables Vg, and Zq, are independent.

(3) Each Ya, can be decomposed into Yy + Yy, where {Yaacr, U{Ys}vem, is a collection
of i.i.d. Gaussian random variables.

Proof. Tt is straightforward to check (1). (2) holds because Y N Z = 0.
For s € Hy U Hy, let Y5 C Y be defined by
Vs ={a=(a1,a2) €Y :a1 =s, or ag = s}.
Note that for s1,s9 € HoU Hy and s1 # s2, Vs; N Vs, = 0. Moreover, Y = Usegyum, Vs-

Therefore

Y=Y, (WyoP@E™)—Py))

scHoUH,
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Note also that (Wy, ., P(y(®) — P(y)) = 0, if s ¢ {a,b}. Hence
Vo= Y Wel@)]- ([P - P(y))(a)}
a€YaUYy
Note that for o € Y,
[P(y™) = P(y)](a) =

27i

{(62k7ri —Dyla) if oy =a
ylag)(em® —1) if ag = a.

So,
Yy = > W) {PE“) - Py)l(e)}
Oéeya
=1 X BeaWdalt ¥ blegWelall{ (s -1)
a€YVaa1=a a€V.00=a

HEOY BleaWe@] - Y Iyla)Wela)] psin

a€la;01=a a€Yai02=a
Similarly, define
2
o= 4S paWiel- Y blegWeall{ (1-cos )
a€Yp;a2=b a€Vp;a1=b

i Y Hawdal- Y W) psin 2

a€Va;0e1=b a€Vq;02=b

Then YV, = Yo + Y, and {Ys}tsem,um, is a collection of independent Gaussian random
variables. Moreover, the variance of Y; is equal to 8(n — 2h) (1 — cos 2%) independent of
the choice of s. O

By the claim, we obtain

<WC’ P(y(ab)) - P(y)> =Y, +Y,+ Zu

Moreover,
max Y, +Y,+Zy > max (Yo +Y) — max (—Zu)
a€Hp,be Hy a€Hy,be Hy a€Hy,be Hy
= max Y, +maxY¥, — max (—Z4)
a€Hy beH, a€Hy,be Hy

By Lemma 3.9 we obtain

2
max Y, > (1 — 0.016)\/2 logh - 8(n — 2h) (1 — cos ;)

a€Hy

2
max Y, > (1 — 0.016)\/2 logh - 8(n — 2h) (1 — Cos 7r>
beHy k

Z < (1 4log h - Var(Z,
ae}}(l)?l;)éH1 ab < ( —i—e)\/ og h - max Var(Z,)
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with probability 1 — o0, (1).(Here 0,(1) — 0 as n — co0.) Moreover,
VarZ,, < 32h°

which is o(n). Hence

W, Py@) _p
aegﬁém( P ) —P(y))

v

2(1 —0.01e — 0(1))\/2 logn - 8(n — 2h) (1 — cos 2;)

2
> 8(1—0.01e — 0(1))\/<1 — cos ]:> nlogn

(1+9) [n(l—cos 2%)]
2logn

with probability 1 — 0,(1). Since 0% > , we have

Pr (maxae, pern o (W, P(y™) = P(y)) > E(n)) > 1 - 0,(1)
Then the lemma follows. 0
7.2. Algorithm: Complex Semi-Definite Programming and GOE perturbation.

In this section, we prove Theorem 2.5.
Assume

V=V +iVs; X=X +iXo

where U; and X; are n X n real symmetric matrices, and Us and Xs are n x n real anti-
symmetric matrices.

Let
5 X1 —Xo ~ i W
X = V fr
( Xo Xy ) ( -V ) ’

then the complex optimization problem (2.17) is equivalent to the following real optimiza-
tion problem
(7.20) max(V, X)

subject to X;i=1, for1<i<2n

Xvp,q = Xp—&-n,q-i-na for1<p<mn, 1<q¢g<n
)N(p7q+n = —)N(p+n7q, for1<p<n, 1<qg<n.
and X -

The dual program of (7.20) is
(7.21) min tr(Z2)

~ A 0 0 B
j Z -V -
subject to —i—(o B )—i—( O)_O

Z is diagonal
By complementary slackness

X =X +iXo =yy = (y1 + iy2)(y1 — iy2)"
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is the unique optimum solution of (2.17) if and only if there exists a dual feasible solution
(Z, A, B), such that

3 A B t t t t
7_ V4 0 " 0 : Y1y% + Y2y? Y1y% YQZY% =0,
0 —A B 0 Y2¥1 —Y1ys Y1iyi +Y2ys

which is equivalent to

(7.22) g [ Yvityeyr yiva—yayi |\ _
"\ vyl - viyh vyl +yeys

7 Zr 0 ’
0 Z

where Z1, Zs are n x n real diagonal matrices. Then (7.22) is equivalent to

Assume

(7.23) R[y"(Z1+ 2, —2V)y] =0
Note that
S [y (Z1 + Zo = 2V)Y] = (Z1 + Zo — 2V1, yoy| — yayh) — (2Vo, y1y! + yoyh)

which is identically zero since each term on the right hand side of (7.24) is the inner product
of a symmetric matrix and an anti-symmetric matrix. Moreover, if the minimizer of (7.21)
is unique, then as a Hermitian matrix, the second smallest eigenvalue of

S =71+ 72y -2V

is strictly positive.
From (7.23) and the fact that S is positive semi-definite, we obtain Sy = 0. Hence

Z1(i,0) + Z2(1,8) = 2y (D) [V (i, /)]y (5);

j=1
and therefore,
(7.24) S(,i)=2 > y@)V(i,j)y(j) —2V(i,i)
j€ln].i#i
For i # §,
(7.25) S(i,j) = ~2V (i, )

For a Hermitian matrix M, we define the Laplacian A(M) of M by
A(M) := diag(M1) — M

where 1 is the column vector all of whose entries are 1. Then from (7.24), (7.25), explicit
computations show that

S = 2diag(y)[A(diag(y) Vdiag(y))]|diag(y)
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Moreover,
diag(y)Vdiag(y) = diag(y)[yy' + odiag(y)W diag(y)]diag(y)
= 11' + oW,
Therefore
(7.26) Aldiag(y)Udiag(y)] = n (IWL — ;m) + o A[W,].

The matrix n (Ian — %llt) has rank (n — 1) and two distinct eigenvalues: 0 and n. The
eigenvalue 0 has multiplicity 1 and n has multiplicity (n — 1). Note that 0 is also an
eigenvalue of the matrix A[Wy], and the n-dimensional vector 1 is an eigenvector with
respect to the eigenvalue 0 for both the matrix n (Ian — l1175) and the matrix A[Wj].

n

Therefore the matrix (7.26) is positive definite if
(7.27) a|A[W]|| < n,

where || - || is the spectral norm of a matrix defined to be the largest modulus of its
eigenvalues. We have, by the triangle inequality,

(7.28) JAW, || < max D Wiy §)| + [[Wall.
j=1

The matrix Wy is a standard GOE matrix. Recall the following proposition about the
largest eigenvalue of the standard GOE matrix.

Proposition 7.9. (Tracy-Widom [9]) Let A be the largest eigenvalue of an n x n GOE
matriz, then when n is large,

_1
A® /o o
max \/i

where &1 1s a random variable independent of n with the GOE Tracy-Widom distribution.

By Proposition 7.9, for any fixed § > 0,
(7.29) lim P([|W|| > (1+06)v2n) = 0.

Now we consider the distribution of maxicp, |>-7—; Wis(i, )’ Since we require that W
is a symmetric matrix, the identically distributed Gaussion random variables {>~7_; W (i, j) }ic[n)
are no longer independent. In our case the random vector (3-7_; Ws(1,7),...,> 7 W(n, j))
is a Gaussian random vector with mean 0 and covariance matrix given by

n 1 1
$_ 1 n 1
1 1 n

The following proposition was proved in [3].
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Proposition 7.10. (Theorem 2.2 of [3])Consider a triangular array of normal random
variables £n4, 1 = 1,2,...,, and n = 1,2,..., such that for each n, {£,,,9 > 0} is a sta-
tionary normal sequence. Assume &, ; ~ N(0,1). Let pnj := E(&ni,€njitj) and assuming
that

(1= pn,j)logn — d; € (0,00], for all j > 1 as n — oo
Assume that there exist positive integers l,, satisfying l,, = o(n) and for which

li logn = 0.
nggojsgglpn,ﬂ ogn =0

and
1=n logn)iliz;fvj

lim lim sup Z n Wemii 2l =

m—o0 nsoo 4 (1—pij)§
Then

< — exp|— —
Jim Pr(max &ni < un(z)) = exp[—0 exp(—2)]
where
T
up(z) = a + by;

and

a, = +/2logn

loglogn + log 47
b, = /21
" ogn+ 2¢/2logn

and 0 € [0,1] is a constant. In particular § =1 if §; = oo for all j > 1.

By Proposition 7.10,

n

max ZWs(i,j)

1€[n] =

v

(1-96) |2logn mzﬁ( Var ZW (,7)
1€
Jj€n]

= (1-9)y2nlogn

with probability 1 — 0,(1). Moreover, by Lemma 3.9, for any fixed € > 0

(7.30) max ZW (i, /)| < (14 €) /2nlogn

1€[n]

with probability 1 — o(1).
Then Theorem 2.5 follows from (7.27), (7.28), (7.29) and (7.30).
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APPENDIX A. PROOF OF LEMMA 3.9

It is known that for a standard Gaussian random variable G; and = > 0,

re 2 e 2z
Al T <Pr(Gi>1)<
(A1) V2r(1 4 22) ~ i 7 < x\/2m

Let Gi,...,Gn be N standard Gaussian random variables. Then by (A.1) we have

Pr <maX]G@' > (1+e)\/m> < Z Pr (Gi > (1+6)\/m)

N 1€[N]
A]\[e—(l—&—e)2 log N

<
~ 2(1+e€)ymlogN
< N°°

If we further assume that G;’s are independent, then

pr<maxai<<1_e>m> [T Pr (Gi < (1- 9210z )

€[N 1€[N]
- I [1—Pr(Gi>(1—e)\/m>}
1€[N]

By (A.1) we obtain

(1—¢)y/2log N 1 >N
P Gi<(1-€y2logN) < (1-
' (gﬁ\)’j (1=e) o ) B ( V21 (1 +2(1 — €)2log N) N(1-9)?

When (3.22) holds, we have

1—e €
1\ ‘
Pr <maxG¢<(1—e)\/2logN> < (1 > <e N

i€[N] - Nl-e

Then the lemma follows.
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