MATH 3631 - Actuarial Mathematics II
 Spring 2013 - Valdez
 Homework No. 5
 due Monday, 7:00 PM, April 15, 2013

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: \qquad Student ID:
I certify that this is my own work, and that I have not copied the work of another student.

Signature:

\qquad Date:

A special permanent disability policy is being priced using a multiple state model with states as expressed in the following diagram:

You are given:

- The policy is issued to a healthy person age x.
- The forces of transitions are independent of age and time:

$$
\mu^{01}=0.001 \quad \mu^{02}=0.005 \quad \mu^{12}=0.012
$$

- For the next 10 years, the death benefit is $\$ 100,000$ for a healthy policyholder and $\$ 50,000$ for a disabled policyholder. No death benefit is payable after 10 years from issue.
- For the next 10 years, the disability benefit is payable continuously at the rate of $\$ 25,000$ per year. No disability benefit is payable after 10 years from issue.
- Premiums are payable continuously at the rate of P per year while policyholder is healthy, for a maximum of 10 years.
- $\delta=5 \%$
(a) (3 points) Calculate ${ }_{10} p_{x}^{00},{ }_{10} p_{x}^{01}$, and ${ }_{10} p_{x}^{02}$.
(b) (4 points) Calculate P based on the equivalence principle.
(c) (3 points) Calculate the reduction in P if there is no death benefit associated with a disabled policyholder.

