MATH 3631 Actuarial Mathematics II Final Examination Monday, 30 April 2018 Time Allowed: 2 hours (6:00 - 8:00 pm) Room: AUST 110 Total Marks: 120 points

Please write your name and student number at the spaces provided:

Name:

Student ID:

- There are twelve (12) written-answer questions here and you are to answer all questions. Each question is worth 10 points. Your final mark will be divided by 120 to convert to a unit of 100%.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.
- Good luck to everyone. Congratulations, and all the best, to those graduating.
- Have a safe and enjoyable summer!

Question	Worth	Score
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
9	10	
10	10	
11	10	
12	10	
Total	120	
%	÷ 120	

Question No. 1:

For a special 20-year deferred whole life annuity-due of 200 per year issued to (45), you are given:

- Annual premiums are payable for the first 20 years.
- If death occurs during the deferral period, all premiums paid are returned without interest at the end of the year of death.
- $\bullet\,$ Expenses, payable at the beginning of the year, are 10% of premium in the first year and 5% of premiums thereafter.
- $\ddot{a}_{45} = 18.3728$
- $\ddot{a}_{45:\overline{20}} = 13.1666$
- $(IA)^{1}_{45:\overline{20}} = 0.3014$

Calculate the annual gross premium.

Question No. 2:

For a fully discrete whole life insurance issued to (40), you are given:

- Expenses, incurred at the beginning of each year, consist of 700 in the first year and 300 in subsequent years.
- The gross premium reserve at the end of year 15 is 76,853.
- $\ddot{a}_{40} = 12.85$
- $\ddot{a}_{55} = 8.89$

Calculate the net premium reserve at the end of year 15.

Question No. 3:

For a fully discrete whole life insurance policy of 10,000 on (50), you are given:

- (i) The annual gross premium is 120.
- (ii) For calculating gross premium reserves in year 6, the following assumptions are made:
 - The 5th-year gross premium reserve is ${}_5V^g = 426$.
 - $q_{56} = 0.002$
 - Annual expenses of 6, payable at the beginning of the year
 - *i* = 0.06
- (iii) Actual experience during year 6 for this policy is:
 - The policy is still inforce and active at the end of year 6.
 - The annual expenses are 5, paid at the beginning of the year.
 - The actual interest earned is 7.25%.

Calculate the gain (or loss) in year 6 for this one policy.

Question No. 4:

A bank classifies its credit card customers each year according to a three-state time-homogeneous Markov model with states:

- (0) preferred
- (1) standard
- (2) below standard

The one-year transition probabilities are:

 $\begin{array}{cccc} 0 & 1 & 2 \\ 0 & 0.80 & 0.15 & 0.05 \\ 1 & 0.40 & 0.50 & 0.10 \\ 2 & 0.00 & 0.25 & 0.75 \end{array}$

The bank charges an annual fee of 100 payable at the beginning of each year for a customer classified 'standard'. However, this fee is reduced by 20% if the customer moves to a 'preferred' status and is increased by 30% if the customer moves to a 'below standard' status.

Assume that a customer today is classified 'standard' and will keep its credit relationship with the bank for the next three years. Interest rate is i = 0.05.

Calculate the actuarial present value of the fees to be paid by this customer in the next three years.

Question No. 5:

Beginning at time 0, the financial strength of a company is based on the following Markov model:

You are given:

- $\mu_t^{12} = 0.0018$ at t = 8
- $\frac{d}{dt} p^{10} = 0.0015$ at t = 8
- $\frac{d}{dt} p^{11} = -0.0030$ at t = 8

Calculate $_t p^{11}$ at t = 8.

Question No. 6:

You are given the following Markov model:

All transition intensities are constant and independent of age:

$$\mu^{01} = 0.010, \quad \mu^{02} = 0.004, \quad \mu^{10} = 0.025, \quad \text{and} \quad \mu^{12} = 0.075$$

Calculate the probability that during the next 10 years, an 'employed' will become 'unemployed' exactly once and remain 'unemployed' until the end of 10 years.

Question No. 7: (revised version)

You are given:

• The following information from a double decrement table:

\overline{x}	$q_x^{(1)}$	$q_x^{(2)}$	$q_x^{\prime(1)}$	$q'^{(2)}_{x}$
45	0.17	0.08	0.18	_
46	—	_	0.20	—

- $\ell_{45}^{(\tau)} = 100000$
- $q_{46}^{\prime(2)} = \frac{5}{3} \times q_{45}^{\prime(2)}$

Calculate $\ell_{47}^{(\tau)}$.

Question No. 8:

			annual	annual	
	annual	percent of	fixed	cost of	
policy	premium	premium	expense	insurance	interest
year	deposit	charge	charge	rate per $1,000$	credited
1	3000	10%	30	2.5	5%
2	4000	5%	30	3.0	5%

For a Type A Universal Life policy with a total death benefit of 150,000, you are given:

Calculate the account value at the end of the second year.

Question No. 9:

For a Type B universal life insurance policy with an Additional Death Benefit (ADB) of 125,000, you are given:

				Annual	
				Cost of	Annual
		Percent of	Annual	Insurance	Credited
Policy	Annual	Premium	Expense	(COI)	Interest
Year	Premium	Charge	Charge	Rate	Rate
1	1000	2%	25	0.005	5.0%
2	2000	f	50	0.006	5.0%
3	5000	f	75	0.007	5.0%

The account value at the end of year 3 is 5,814.17.

Calculate f.

Question No. 10:

You are given:

- Male mortality is based on a constant force of mortality with $\mu = 0.01$.
- Female mortality follows DeMoivre's law with $\omega = 120$.
- Assume for any pairs of male and female, their future lifetimes are independent.

Calculate the probability that a female age 50 will outlive a male age 50 by at least 5 years.

Question No. 11:

For a last-survivor whole life insurance issued to two lives, each both age 55, you are given:

- The policy pays a death benefit of B at the end of the year of the second death.
- Annual level premiums of 1,000 are paid at the beginning of each year that at least one of the two lives is alive.
- Mortality follows the Illustrative Life Table.
- *i* = 0.06
- The future lifetimes of the two lives are independent.

Calculate B.

Question No. 12:

For two lives both of the same age 50, you are given:

- They have independent future lifetimes.
- Mortality for both lives follows DeMoivre's law with $\omega = 100$.
- $\delta = 0.05$

Calculate $\bar{A}_{\overline{50:50}}$.

Hint:
$$\int t e^{-kt} dt = -\frac{1}{k} e^{-kt} \left(t + \frac{1}{k}\right)$$
, for $k > 0$

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK