MATH 3631
Actuarial Mathematics II
Class Test 2-3:35-4:50 PM
Monday, 15 April 2019
Time Allowed: 1 hour and 15 minutes
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
A critical illness model is depicted according to the following multiple state model:

You are the following forces of transition for a life (x) :

$$
\begin{aligned}
& \mu_{x+t}^{\mathrm{HC}}= \begin{cases}0.02, & t \leq 5 \\
0.04, & t>5\end{cases} \\
& \mu_{x+t}^{\mathrm{HD}}=0.01, \quad \text { for all } t
\end{aligned}
$$

and

$$
\mu_{x+t}^{\mathrm{CD}}=0.05, \quad \text { for all } t
$$

Calculate the probability that a healthy life (x) will remain continuously healthy for the following 10 years.

Question No. 2:

The financial strength of a company is based on the following Markov model:

You are given the constant forces of transition:

$$
\mu^{01}=0.01 \quad \mu^{10}=0.05 \quad \mu^{12}=0.25
$$

In calculating transition probabilities, use the Kolmogorov's forward equations with the Euler approximation based on steps of $h=0.5$.

Calculate the probability that a company currently bankrupt will be solvent at the end of one year.

Question No. 3:

A disease progresses according to the following multiple state model:

An insurance company provides coverage for this disease by paying a fixed benefit amount of 15,000 at the moment an uninfected policyholder reaches 'Stage Two'. You are given:

- All transition intensities are constant and independent of age:

$$
\mu^{01}=0.002, \quad \mu^{12}=0.100, \quad \mu^{03}=0.004, \quad \mu^{13}=0.050, \quad \text { and } \quad \mu^{23}=0.250
$$

- $\delta=0.05$

Calculate the actuarial present value for this insurance benefit.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

Question No. 4:

A bank classifies its credit card customers each year according to a three-state time-homogeneous Markov model with states:
(0) preferred
(1) standard
(2) below standard

The one-year transition probabilities are:
0
1
2 $\left(\begin{array}{ccc}0 & 1 & 2 \\ 0.85 & 0.10 & 0.05 \\ 0.40 & 0.50 & 0.10 \\ 0.00 & 0.20 & 0.80\end{array}\right)$

The bank charges an annual fee of 100 payable at the beginning of each year for a customer classified 'standard'. However, this fee is reduced by 20% if the customer moves to a 'preferred' status and is increased by 30% if the customer moves to a 'below standard' status.
Assume that a customer today is classified 'standard' and will keep its credit relationship with the bank for the next three years. Interest rate is $i=0.05$.
Calculate the actuarial present value of the fees to be paid by this customer in the next three years.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

Question No. 5:

You are given the following extract from a triple-decrement table:

age x	no. of lives $\ell_{x}^{(\tau)}$	heart disease $q_{x}^{(1)}$	accidents $q_{x}^{(2)}$	other causes $q_{x}^{(3)}$
50	$1,000,000$	0.0008	0.0010	0.0015
51	-	0.0010	0.0015	0.0018
52	-	0.0012	0.0020	0.0020

Calculate $\ell_{52}^{(\tau)}$.

Question No. 6:

You are given the following extract from a triple decrement model:

x	$\ell_{x}^{(\tau)}$	$q_{x}^{(1)}$	$q_{x}^{(2)}$	$q_{x}^{(3)}$
55	-	0.02	0.05	0.06
56	8800	0.05	0.10	0.20

Suppose that after preparing this table, you corrected that $q_{55}^{(3)}$ should have been 0.05 while all other probability values in the table above remain the same.
Calculate the correct value of $d_{56}^{(3)}$.

Question No. 7:

In a triple decrement table, you are given that decrement (1) is death, decrement (2) is disability, and decrement (3) is withdrawal. You are given:

- $q_{65}^{\prime(1)}=0.05, q_{65}^{\prime(2)}=0.02$ and $q_{65}^{\prime(3)}=0.10$.
- Withdrawals occur only at the end of the year.
- Mortality and disability are uniformly distributed over each year of age in the associated single decrement tables.

Calculate $p_{65}^{(\tau)}$.

Question No. 8:

You are given:

- An insurance policy issued to (50) will pay 50,000 upon death if death is accidental and occurs within 15 years.
- An additional benefit of 10,000 will be paid regardless of the time or cause of death.
- The force of accidental death at all ages is 0.001 .
- The force of death for all other causes is 0.005 at all ages.
- $\delta=0.05$

Calculate the actuarial present value for this policy.

Question No. 9:

You are given the joint density of $\left(T_{x}, T_{y}\right)$:

$$
f_{T_{x} T_{y}}(s, t)=\frac{1}{90}(s+t), \text { for } 0<s<4,0<t<5 .
$$

Calculate the probability (x) outlives (y).

Question No. 10:
You are given:

- ${ }_{10} q_{\overline{50: 60}}=0.0105$
- ${ }_{10} p_{50}=0.800$
- ${ }_{10} p_{60}=0.750$
- $p_{60}=0.975$

Calculate q_{70}.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

