MATH 3631 Actuarial Mathematics II Class Test 2 - 3:35-4:50 PM Monday, 13 April 2020 Time Allowed: as verbally agreed Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name: _____ Student ID: _____

PLEASE READ AND FOLLOW THESE INSTRUCTIONS:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide DETAILS of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Please keep in mind that while taking this test, you are expected to act in accordance to the statement of Academic Integrity of the University of Connecticut.
- Please submit your answers with a PDF file starting with your last name followed by an underscore and whatever else you wanna name it. For example, Valdez_ClassTest2.pdf

Question No. 1:

A health insurance company classifies its policyholders according to three states:

- (0) preferred
- (1) standard
- (2) substandard

Transitions are annual and follow a time-homogeneous Markov model. The one-year transition probabilities are:

 $\begin{array}{cccc} 0 & 1 & 2 \\ 0 & 0 & 0.15 & 0.05 \\ 1 & 0.50 & 0.40 & 0.10 \\ 2 & 0.01 & 0.25 & 0.74 \end{array}$

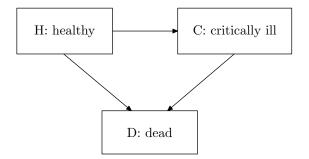
At the start of each year that the policyholder is classified 'standard', the premium is P. This premium is reduced by 25% if the customer moves to a 'preferred' state but is increased by 40% if the customer moves to a 'substandard' state.

Today, a customer purchases a policy and the company classified him as 'substandard'. The customer will keep its policy with this same company for the next 3 years, and the expected present value of his premiums is equal to 2,000 at an interest rate of i = 0.05.

Calculate P, the annual premium for a 'standard' policyholder.

Question No. 2:

A life insurer uses the following three-state model to price a two-year critical illness policy issued to healthy policyholders at time t = 0:



You are given:

• The constant forces of transition are:

 $\mu^{\rm HC} = 0.010$ $\mu^{\rm HD} = 0.005$ $\mu^{\rm CD} = 0.025$

- The policy pays 10,000 at the moment of death of the policyholder from the critically ill state. No other benefits are provided.
- $\delta = 5\%$

Calculate the actuarial present value of the benefits for this critical illness policy.

Question No. 3:

_		number			
	age	of survivors	heart disease	accidents	other causes
	x	$\ell_x^{(au)}$	$q_x^{(1)}$	$q_x^{(2)}$	$q_x^{(3)}$
	73	75,085	0.010	—	0.040
	74	—	0.015	0.008	0.075
	75	—	0.020	0.010	0.092
_	76	56,372	_	—	

You are given the following extract from a triple-decrement table:

Calculate the number of deaths due to accidents between ages 73 and 74.

Question No. 4:

For a special 3-year endowment insurance on (55), you are given:

• The following two-decrement table, where decrement w refers to with drawal and d refers to death:

x	$\ell_x^{(au)}$	$d_x^{(w)}$	$d_x^{(d)}$
55	10000	300	300
56	9400	150	400
57	8850	0	500

- The death benefit is 1000, payable at the end of the year of death.
- The endowment benefit is B, payable at the end of year 3 if the policyholder is alive.
- There are no benefits upon withdrawal.
- *i* = 0.05
- The actuarial present value for this insurance is 2,000.

Calculate B.

Question No. 5:

For two lives, (x) and (y), with independent future lifetimes, you are given:

k	q_{x+k}	q_{y+k}
0	0.10	0.08
1	0.15	0.08
2	0.20	0.10

Calculate $_{3}p_{\overline{xy}}$. Interpret this probability.

Question No. 6:

A special joint whole life insurance is issued on two lives, (x) and (y), whose joint mortality is a multiple state model with common shock:



You are given:

- The policy pays 2500 at the moment of simultaneous death, if that occurs, and zero otherwise.
- The following forces of intensities:

 $\mu^{01} = 0.010 \qquad \mu^{02} = 0.025 \qquad \mu^{03} = 0.005$

• The actuarial present value of this insurance is 175.

Calculate the force of interest.

Question No. 7:

For two lives, (x) and (y), with independent future lifetimes, you are given:

- The probability that (x) dies after (y) and within one year is 0.063.
- The probability that (y) dies before (x) and within one year is 0.474.
- The probability that both (x) and (y) are dead within one year is 0.117.

Calculate q_x .

Question No. 8:

An insurance is issued on two lives, (x) and (y), with independent future lifetimes. You are given:

- The insurance pays 100 at the moment of death of (x), provided (x) dies after (y).
- Both lives are subject to the same mortality, each with a constant force of mortality equal to 0.05.
- $\delta = 0.05$

Calculate the actuarial present value for this insurance.

Question No. 9:

For two lives (50) and (60) with independent future lifetimes, you are given:

- $_{10}p_{50} = 0.95$
- $_{10}p_{\overline{50:60}} = 0.99$

Calculate $_{10}p_{50:60}$.

Question No. 10:

For an annuity immediate on a husband and wife of the same age 95, you are given:

• Their future lifetimes are independent.

•
$$q_x = \begin{cases} 0.8, & x = 95, 96, \dots, 99\\ 1.0, & x = 100 \end{cases}$$

• The reversionary annuity pays 1 each year after the death of the husband.

Calculate the actuarial present value of this reversionary annuity.

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK