MATH 3631
Actuarial Mathematics II
Class Test 2-3:35-4:50 PM
Monday, 13 April 2020
Time Allowed: as verbally agreed
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: EMIL Student ID: Suggested Solutions PLEASE READ AND FOLLOW THESE INSTRUCTIONS:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide DETAILS of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Please keep in mind that while taking this test, you are expected to act in accordance to the statement of Academic Integrity of the University of Connecticut.
- Please submit your answers with a PDF file starting with your last name followed by an underscore and whatever else you wanna name it. For example, Valdez_ClassTest2.pdf

Question No. 1:

$$
\text { initial stat vector }=\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right)
$$

A health insurance company classifies its policyholders according to three states:
(0) preferred

$$
\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) * Q=\left(\begin{array}{lll}
.01 & .25 & .74
\end{array}\right)
$$

(1) standard
(2) substandard
$(.01 .25 .74) * Q=(0.1404,0.2865,0.5731)$

Transitions are annual and follow a time-homogeneous Markov model. The one-year transition probabilities are:

$$
Q<=\begin{gathered}
0 \\
1 \\
2
\end{gathered}\left(\begin{array}{ccc}
0 & 1 & 2 \\
0.80 & 0.15 & 0.05 \\
0.50 & 0.40 & 0.10 \\
0.01 & 0.25 & 0.74
\end{array}\right)
$$

At the start of each year that the policyholder is classified 'standard', the premium is P. This premium is reduced by 25% if the customer moves to a 'preferred' state but is increased by 40% if the customer moves to a 'substandard' state.
Today, a customer purchases a policy and the company classified him as substandard. The $\quad .75 \mathrm{P}$ customer will keep its policy with this same company for the next 3 years, and the expected present value of his premiums is equal to 2,000 at an interest rate of $i=0.05$.
Calculate P, the annual premium for a 'standard' policyholder.

$$
\text { Probabilities * Cash Flows } \quad V=1 / .05
$$

$$
\begin{aligned}
& \text { Year 0: } 1.4 P \\
& \text { Year 1: } \quad .75 P(.01)+P(.25)+1.4 P(.74)=1.2935 P \\
& \text { Year 2: } \quad .75 P(.1404)+P(.2865)+1.4 P(.5731)=1.19414 P \\
& \text { APV (premiums) }=1.4 P+1.2935 P v+1.19414 P V^{2} \\
&=3.715025 P \Rightarrow 2.000 \\
& \text { Solving for } P \text {, we get } P=\frac{2000}{3.715025}=538.3544 \\
& \approx 538.35
\end{aligned}
$$

Question No. 2:

A life insurer uses the following three-state model to price a two-year critical illness policy issued to healthy policyholders at time $t=0$:

You are given:

- The constant forces of transition are:

$$
\mu^{\mathrm{HC}}=0.010 \quad \mu^{\mathrm{HD}}=0.005 \quad \mu^{\mathrm{CD}}=0.025
$$

- The policy pays 10,000 t the moment of death of the policyholder from the critically ill state. No other benefits are provided.
- $\delta=5 \%$

Calculate the actuarial present value of the benefits for this critical illness policy.

$$
\begin{aligned}
\text { APV } & =\int_{0}^{2} \int_{0}^{t} 10,000 e^{-.05 t} s P^{H H} \mu^{H C} t-s P^{c C} \mu^{c D} d s d t \\
& =10,000 * \int_{0}^{2} \int_{0}^{t} e^{-.05 t} e^{-.0155}(0.01) e^{-.025(t-s)} 0.025 d s d t \\
& =10,000 * .01 \times 0.025 \int_{0}^{\int_{0}^{2} \int_{0}^{t} e^{-.075 t} e^{.015} d s d t} \\
& =10,000 * .025 \underbrace{\left.\int_{0}^{2} e^{-.065 t}-e^{-.075 t}\right) d t}_{\int_{0}^{2} e^{-.075 t} \frac{1}{201}\left(e^{.01 t}-1\right) d t} \\
& =4.556982
\end{aligned}
$$

Question No. 3:
You are given the following extract from a triple-decrement table:

age	number of survivors x	$\ell_{x}^{(\tau)}$	heart disease $q_{x}^{(1)}$	accidents $q_{x}^{(2)}$
73	75,085	0.010	-	0.040
74	-	0.015	0.008	0.075
75	-	0.020	0.010	0.092
76	56,372	-	-	-

Calculate the number of deaths due to accidents between ages 73 and 74 .

$$
\begin{array}{r}
d_{73}^{(2)} \\
\frac{56.372}{l_{75}^{(\tau)}}=1-(.020+.010+0.092) \Rightarrow l_{75}^{(\tau)}=\frac{56372}{0.878}=64205.01 \\
\frac{64205.0)}{l_{74}^{(\tau)}}=1-(.015+.008+.075) \Rightarrow l_{74}^{(\tau)}=\frac{64205.01}{0.902}=71180.72 \\
\frac{71180.2}{75885}=1-\left(.010+q_{73}^{(2)}+.040\right) \Rightarrow q_{73}^{(2)}=\underbrace{0.95-\frac{71180.72}{75085}} \\
=0.001998135 \\
\approx 0.002
\end{array}
$$

$$
\text { Therefore, } d_{73}^{(2)}=\frac{75085 * 0.002}{150.17} \approx 150
$$

Question No. 4:
For a special 3-year endowment insurance on (55), you are given:

- The following two-decrement table, where decrement w refers to withdrawal and d refers to death:

x	$\ell_{x}^{(\tau)}$	$d_{x}^{(w)}$	$d_{x}^{(d)}$
55	10000	300	300
56	9400	150	400
57	8850	0	500

- The death benefit is 1000 , payable at the end of the year of death.
- The endowment benefit is B, payable at the end of year 3 if the policyholder is alive.
- There are no benefits upon withdrawal.
- $i=0.05$

$$
V=1 / 1.05
$$

- The actuarial present value for this insurance i. 2,000. APV Calculate B.

$$
\begin{aligned}
& \text { APV (insurance) }=\underbrace{10,00\left(\frac{300}{10000} V+\frac{400}{10000} V^{2}+\frac{500}{10000} V^{3}\right)}+\underbrace{B \frac{(8850-500)}{10000} V^{3}} \\
& =108.0445+.835 v^{3} B \Rightarrow 2000 \\
& B=\frac{2000-108.0445}{.835 v^{3}}=2,622.964 \approx 2,623
\end{aligned}
$$

Question No. 5:
For two lives, (x) and (y), with independent future lifetimes, you are given:

k	q_{x+k}	q_{y+k}
0	0.10	0.08
1	0.15	0.08
2	0.20	0.10

Calculate ${ }_{3} p_{\overline{x y}}$. Interpret this probability.

$$
\begin{aligned}
& \text { alculate }{ }_{3} p_{\overline{x y}} \text {. Interpret this probability. } \\
& { }_{3} \rho_{\overline{x y}}=\text { probability that in } 3 \text { years, at least one of }(x) \text { or }(y) \text { is still alive. }
\end{aligned}
$$

$$
=1-3 q \overline{x y}=1-3 q_{x}^{*} 3 g_{y}
$$

$$
=1-\left(1-3 p_{x}\right) \times\left(1-3 p_{y}\right)
$$

$$
\begin{aligned}
& =1-\left(1-3 p_{x}\right) \times(1-.17 \\
& =1-(1-.9 \times .85 * .80)(1-.92 \times .92 * .9)
\end{aligned}
$$

$$
=0.9075629 \approx \underline{0.9076}
$$

Question No. 6:

A special joint whole life insurance is issued on two lives, (x) and (y), whose joint mortality is a multiple state model with common shock:

You are given:

- The policy pays 2500 at the moment of simultaneous death, if that occurs, and zero otherwise.
- The following forces of intensities:

$$
\mu^{01}=0.010 \quad \mu^{02}=0.025 \quad \mu^{03}=0.005
$$

- The actuarial present value of this insurance is 175 .

Calculate the force of interest.

$$
\begin{aligned}
A P V & =\int_{0}^{\infty} 2500 e^{-\delta t} e^{-.04 t} * .005 d t \\
& =2500(.005) \underbrace{}_{\frac{1}{e_{0}} \underbrace{e^{-(.04+\delta) t}}_{\frac{1}{.04+\delta}} d t}=175
\end{aligned}
$$

Solving for δ, we get

$$
\delta=\frac{2500(.005)}{175}-.04=.03142857 \approx .03
$$

Question No. 7:
For two lives, (x) and (y), with independent future lifetimes, you are given:

- The probability that (x) dies after (y) and within one year is $0.063 \rightarrow q_{x y}^{2} \rightarrow .063$
- The probability that (y) dies before (\boldsymbol{x}) and within one year is $0.474 . \rightarrow q x y^{\prime}=.474$
- The probability that both (x) and (y) are dead within one year is 0.117 . Calculate q_{x}.

$$
g_{\overline{x y}}=q_{x} * q_{y}
$$

$$
\begin{aligned}
& \frac{.117}{q_{y}}=q_{x} \Rightarrow q_{x} \\
&=0.2215909 \\
& \approx 0.222
\end{aligned}
$$

$$
\begin{aligned}
& \text { 17. } q \overline{x y}=.117 \\
& \underbrace{g_{x}^{2} x y}+g x^{2} y \\
& \Rightarrow q x^{2} y \\
& =.117-.063 \\
& \\
& =.054
\end{aligned}
$$

$$
\begin{aligned}
q_{x y}^{\prime}+q_{x y}^{2} & =q_{y} \\
.474+.054 & =0.528
\end{aligned}
$$

Question No. 8:
An insurance is issued on two lives, (x) and (y), with independent future lifetimes. You are given:

- The insurance pays 100 at the moment of death of (x), provided (x) dies after (y).
- Both lives are subject to the same mortality, each with a constant force of mortality equal to 0.05.
- $\delta=0.05$

Calculate the actuarial present value for this insurance.

$$
\begin{aligned}
A P V(\text { insurance }) & =\int_{0}^{\infty} 100 e^{-.05 t} t \int_{x}^{\mu_{x+t}} \cdot \underbrace{t-05}_{e^{-.05 t}} \underbrace{}_{\left(1-e^{-.05 t}\right.} d t \\
& =100 * .05\left(\int_{0}^{\infty} e^{-.10 t} d t-\int_{0}^{\infty} e^{-.15 t} d t\right) \\
& =100 * .05\left(\frac{1}{.10}-\frac{1}{.15}\right)
\end{aligned}
$$

Question No. 9:

For two lives (50) and (60) with independent future lifetimes, you are given:

- ${ }_{10} p_{50}=0.95$
- ${ }_{10} p_{\overline{50: 60}}=0.99 \longrightarrow 1-109 \overline{{ }_{50: 60}}=1-\underbrace{10950}_{.05} \times 10960=.99$

Calculate ${ }_{10} p_{50: 60}$.
$\Rightarrow \quad 10 q_{60}=\frac{.01}{.05}=.20 \Rightarrow{ }_{10} P_{60}=.80$
$=10 \rho_{50} \times 10 P_{60}$
$=0.95 \times 0.80=0.76$

Question No. 10:
For an annuity immediate on a husband and wife of the same age 95 , you are given:

- Their future lifetimes are independent.
- $q_{x}= \begin{cases}0.8, & x=95,96, \ldots, 99 \\ 1.0, & x=100\end{cases}$
- $i=0.10$
- The reversionary annuity pays 1 each year after the death of the husband.

Calculate the actuarial present value of this reversionary annuity.

$$
V=1 / 1.10
$$

$$
\begin{aligned}
& a_{95}=\sum_{k=1}^{\infty} v^{k}{ }_{k} P_{95}=\sum_{k=1}^{5}\left(\frac{1}{1.10}\right)^{k}(.20)^{k} \\
& =\frac{.2}{1.1}\left(\frac{1-(.20 / 110)^{5}}{1-.20 \%, 10}\right)=.2221781 \\
& a_{95: 95}=\sum_{k=1}^{5} v^{k} k_{95} k p_{95} \\
& =\sum_{k=1}^{5}\left(\frac{(.20)^{2}}{1.10}\right)^{k} \\
& =\frac{.04}{1.10}\left(\frac{1-(.04 / 1.10)^{5}}{1-(.04 / 1.10)}\right)=.03773585 \\
& a_{95} \mid 95=a_{95}-a_{95}: 95 \\
& =0.1844422 \approx 0.184
\end{aligned}
$$

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

