MATH 3631
Actuarial Mathematics II
Class Test 1 - 3:35-4:50 PM
Wednesday, 20 February 2019
Time Allowed: 1 hour and 15 minutes
Total Marks: 100 points
Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:
For a fully discrete whole life insurance of 1000 on (35), you are given:

- First year expenses are 20% of the gross premium.
- Renewal expenses are 5% of the gross premium.
- Expenses are incurred at the beginning of the policy year.
- Gross premium is calculated according to the equivalence principle.
- Mortality follows the Survival Ultimate Life Table with $i=0.05$.

Calculate the gross premium reserve at the end of year 20.

Question No. 2:

Your company issues fully discrete whole life policies to a group of lives age 40. For each policy, the death benefit is 100 and you are given:

- Assumed mortality and interest are the Survival Ultimate Life Table at 5%.
- Assumed expenses are 5% of gross premium, payable at the beginning of each year, and 5 to process each death claim, payable at the end of the year of death.
- Annual gross premium equals 0.72 .
- The gross premium reserves are ${ }_{15} V=13.64$ and ${ }_{16} V=14.87$.

During year 16, actual experience is as follows:

- There are 20,000 lives in force at beginning of the year with 45 deaths during the year.
- Investment earnings equal 5%.
- Expenses are 6% of gross premium and 1 to process each death claim.

Gains or losses are calculated according to: interest \rightarrow mortality \rightarrow expenses.

Calculate the gain or loss due to expenses during year 16.

Question No. 3:

For a whole life insurance on (40), you are given:

- The death benefit is 1000 , payable at the end of the year of death.
- There is only a single gross premium of 125 , payable at policy issue.
- There are no expenses.
- Mortality follows the Survival Ultimate Life Table.
- $\delta=0.05$
- L_{10} is the loss for this policy in year 10 .

Calculate $\operatorname{Pr}\left[L_{10}>200\right]$.

Question No. 4:

For a special fully discrete whole life insurance on (40), you are given:

- The death benefit is 20 in the first year and 10 in all subsequent years.
- $q_{40}=0.0020 \quad q_{50}=0.0025$
- $i=0.03$
- $A_{40}=0.37 \quad A_{50}=0.48$
- Deaths within one year are uniformly distributed throughout the year.

Calculate ${ }_{10.5} V$, the net premium reserve in year 10.5.

Question No. 5:

For a 3 -year endowment insurance on (62), you are given:

- The death benefit, payable at the end of the year of death, is equal to 10 plus the benefit reserve.
- The endowment benefit is 40 .
- Level premiums, P, are payable annually at the beginning of each year.
- $q_{62+k}=0.025$, for $k=0,1,2, \ldots$
- $i=0.05$

Calculate P.

Question No. 6:

For a fully discrete whole life insurance of 5 on (60), you are given:

- $q_{60}=0.003 \quad q_{61}=0.004$
- $i=0.05$
- $A_{60}=0.30$
- ${ }^{2} A_{60}=0.10$
- L_{1} is the insurer's prospective loss at time 1 for this policy.

Calculate $\operatorname{Var}\left(L_{1}\right)$.

Question No. 7:

For a fully discrete whole life insurance of 100 on (x), you are given:

- Expenses, incurred at the beginning of each year, equal 10% of the gross premium in the first year and 5% of the gross premium in subsequent years.
- Both net and gross premiums are calculated using the equivalence principle.
- $i=0.04$
- $\ddot{a}_{x}=12.5$
- $\ddot{a}_{x+10}=9.4$

Calculate ${ }_{10} V^{e}$, the expense reserve (or DAC) at the end of year 10 .

Question No. 8:

A life insurer uses the following three-state model to price critical illness policies issued to healthy policyholders at time $t=0$:

You are given:

- All forces of transition are constant, that is, independent of age and time with:

$$
\mu^{\mathrm{HD}}=0.017 \quad \mu^{\mathrm{CD}}=0.055
$$

- The probability that a healthy policyholder will be healthy at the end of 10 years is 0.64 .
- μ^{HC} is the force of transition from state H to C .

Calculate μ^{HC}.

Question No. 9:

You are given the following retirement model:

You are given:

- All forces of transition are constant, that is, independent of age and time.
- $\mu^{a w}, \mu^{a r}$ and $\mu^{a d}$ denote the forces of transitions from being Active to the other states, respectively.
- $\mu^{a d}=0.010$
- The probability that you Withdraw, given you leave the Active state within 10 years, is 0.250 .
- The probability that you Die, given you leave the Active state within 10 years, is 0.625 . Calculate $\mu^{a r}$.

Question No. 10:
A disease progresses according to the following multiple state model:

All transition intensities are constant and independent of age:

$$
\mu^{01}=0.005, \quad \mu^{12}=0.08, \quad \mu^{03}=0.01, \quad \mu^{13}=0.05, \quad \text { and } \quad \mu^{23}=0.40
$$

Calculate the probability that an Uninfected person today will reach Stage Two at the end of 10 years.

Bonus questions: 1 point each

State the first and last name of your Math 3631 instructor:

State one reason why you would buy life insurance (now at your age while still in college assume you can afford): \qquad

State one reason why insurers must hold reserves: \qquad

State one reason why insurers will be reluctant to issue you a policy, with the first premium payable a year from issue: \qquad

State one reason why gross premium reserves are generally lower than net premium reserves (for the same type of coverage):

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK

