MATH 3631

Actuarial Mathematics II Class Test 1 - 3:35-4:50 PM

Wednesday, 20 February 2019 Time Allowed: 1 hour and 15 minutes

Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name:	- EMIL	Student ID:	Suggisted	Solutions

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

For a fully discrete whole life insurance of 1000 on (35), you are given:

- First year expenses are 20% of the gross premium.
- Renewal expenses are 5% of the gross premium.
- Expenses are incurred at the beginning of the policy year.
- Gross premium is calculated according to the equivalence principle.
- Mortality follows the Survival Ultimate Life Table with i = 0.05.

Calculate the gross premium reserve at the end of year 20.

$$APV(FP_0) = APV(FB_0) + APV(FE_0) *$$

$$G \ddot{a}_{35} = 1000 A_{35} + .15 G + .05 G \ddot{a}_{35}$$

$$G = \frac{1000 A_{35}}{.95 \ddot{a}_{35} - .15} = 5.400534$$

$$20V^8 = APV(FB_{20}) + APV(FE_{20}) - APV(FP_{20})$$

$$= 1000A_{55} + .05G\ddot{a}_{55} - G\ddot{a}_{55}$$

$$= 1000A_{55} - .95G\ddot{a}_{55} - 16.0599$$

$$= 1000A_{55} - .95G\ddot{a}_{55}$$

$$= 152.8446$$

Question No. 2:

Your company issues fully discrete whole life policies to a group of lives age 40. For each policy, the death benefit is 100 and you are given:

- Assumed mortality and interest are the Survival Ultimate Life Table at 5%.
- Assumed expenses are 5% of gross premium, payable at the beginning of each year, and 5 to process each death claim, payable at the end of the year of death.
- Annual gross premium equals 0.72.
- The gross premium reserves are $_{15}V=13.64$ and $_{16}V=14.87$.

During year 16, actual experience is as follows:

- There are 20,000 lives in force at beginning of the year with 45 deaths during the year.
- Investment earnings equal 5%.
- Expenses are 6% of gross premium and 1 to process each death claim.

Gains or losses are calculated according to: interest \rightarrow mortality \rightarrow expenses.

Calculate the gain or loss due to expenses during year 16.

Question No. 3:

For a whole life insurance on (40), you are given:

- The death benefit is 1000, payable at the end of the year of death.
- There is only a single gross premium of 125, payable at policy issue.
- There are no expenses.
- Mortality follows the Survival Ultimate Life Table.
- $\delta = 0.05$
- L_{10} is the loss for this policy in year 10.

Calculate $Pr[L_{10} > 200]$.

Since no more premiums to be part,
$$L_{10} = PVFB_{10}$$

$$= Pr[1000V^{KH}] > 200]$$

$$= Pr[1000V^{KH}] > 200]$$

$$= Pr[(KH) \log V > \log(0.20)]$$

$$= Pr[(K < \frac{\log(0.20)}{-\delta} - 1]$$

$$= Pr[(K < 31]) = 32 fig = 1 - \frac{1282}{250}$$

$$= 1 - \frac{70507V}{993383}$$

$$= 1 - \frac{70507V}{993383}$$

$$= 1 - \frac{70507V}{993383}$$

Question No. 4:

For a special fully discrete whole life insurance on (40), you are given:

- The death benefit is 20 in the first year and 10 in all subsequent years.
- $q_{40} = 0.0020 q_{50} = 0.0025$
- i = 0.03
- $A_{40} = 0.37$ $A_{50} = 0.48$
- Deaths within one year are uniformly distributed throughout the year.

Calculate $_{10.5}V$, the net premium reserve in year 10.5.

$$A_{40} = 0.37$$
 $A_{40} = 1 - A_{40}$
 $A_{40} = 1 - A_{40}$

$$P = \frac{10\sqrt{940 + 10A40}}{\dot{a}_{40}} = 0.1719564$$

$$16V = 10A_{50} - P\ddot{a}_{50}$$

$$= 1.730005 \approx 1.73$$

$$\frac{1}{1-0.5} = \frac{10 \times 0.5}{1-0.5} = \frac{10 \times 0.5}{1-0.5} = \frac{0.5}{1-0.5} = \frac{0.$$

Question No. 5:

For a 3-year term insurance on (62), you are given:

- The death benefit, payable at the end of the year of death, is equal to 10 plus the benefit reserve.
- The endowment benefit is 40.
- Level premiums, P, are payable annually at the beginning of each year.
- $q_{62+k} = 0.025$, for k = 0, 1, 2, ...
- i = 0.05

Calculate P.

$$= 15.35553 \approx 15.3$$

Question No. 6:

For a fully discrete whole life insurance of 5 on (60), you are given:

- $q_{60} = 0.003$ $q_{61} = 0.004$
- i = 0.05
- $A_{60} = 0.30$

 \bullet L_1 is the insurer's prospective loss at time 1 for this policy.

Calculate $Var(L_1)$.

Let P be the premium per \$1 of benefit.

i = .05 $Ac_0 = 0.30$ $ac_0 = \frac{1 - Ac_0}{d}$

Now use recursive formula

$$A_{61} = \frac{A_{60}(1.05) - 9_{60}}{1 - 9_{60}} = 0.3129388169$$

and
$${}^{2}A_{61} = {}^{2}A_{60} (1.05)^{2} - 9_{60} = 0.177572718$$

Question No. 7:

For a fully discrete whole life insurance of 100 on (x), you are given:

- Expenses, incurred at the beginning of each year, equal 10% of the gross premium in the first year and 5% of the gross premium in subsequent years.
- Both net and gross premiums are calculated using the equivalence principle.

•
$$i = 0.04$$

• $\ddot{a}_x = 12.5$

• $\ddot{a}_{x+10} = 9.4$

Calculate ${}_{10}V^e$, the expense reserve (or DAC) at the end of year 10.

$$P = 100 \frac{Ax}{ax} = 4.153846$$

$$10V^8 = 100 \text{ Ax+10} + .05 G \ddot{G}_{X+10} - G \ddot{G}_{X+10}$$

$$= 100 \text{ Ax+10} - .95 G \ddot{G}_{X+10}$$

$$-) 10V^9 = 100 \text{ Ax+10} - P \ddot{G}_{X+10}$$

Question No. 8:

A life insurer uses the following three-state model to price critical illness policies issued to healthy policyholders at time t = 0:

You are given:

• All forces of transition are constant, that is, independent of age and time with:

$$\mu^{\text{HD}} = 0.017$$
 $\mu^{\text{CD}} = 0.055$

- The probability that a healthy policyholder will be healthy at the end of 10 years is 0.64.
- μ^{HC} is the force of transition from state H to C.

Calculate μ^{HC} .

$$bp^{HH} = bp^{HH} = e^{-\int_{0}^{10} (\mu + \mu + p) dt}$$

$$= e^{-\mu + c} b \times e^{-0.07(10)} = 0.64$$

$$= e^{-10\mu + c} = 0.64 \times e^{0.17}$$

$$= log(0.64 \times e^{0.17})$$

$$= log(0.64 \times e^{0.17}) = 0.02762871$$

$$= log(0.64 \times e^{0.17}) = 0.02762871$$

Question No. 9:

You are given the following retirement model:

You are given:

- All forces of transition are constant, that is, independent of age and time.
- μ^{aw} , μ^{ar} and μ^{ad} denote the forces of transitions from being Active to the other states, respectively.
- $\mu^{ad} = 0.010$
- The probability that you Withdraw, given you leave the Active state within 10 years, is 0.250.
- The probability that you Die, given you leave the Active state within 10 years, is 0.625.

Calculate μ^{ar} .

$$\frac{\mu^{aw}}{\mu^{aw} + \mu^{ar} + \mu^{ad}} = 0.250$$

$$\frac{\mu^{aw}}{\mu^{ad}} = 0.250$$

$$\frac{\mu^{aw}}{\mu^{ad}} = 0.625$$

$$\frac{\mu^{aw}}{\mu^{ar} + \mu^{ad}} = 0.625$$

$$\frac{\mu^{aw}}{\mu^{ar} + \mu^{ad}} = 0.625$$

$$\Rightarrow \frac{\mu^{ar}}{\mu^{ar} + \mu^{rd}} = 1 - 0.25 - 0.625 = 0.125$$

$$\Rightarrow \mu^{ar} = \frac{0.125}{0.625} = \frac{0.025}{0.625} = \frac{0.025}{0.62$$

Question No. 10:

A disease progresses according to the following multiple state model:

All transition intensities are constant and independent of age:

$$\mu^{01} = 0.005$$
, $\mu^{12} = 0.08$, $\mu^{03} = 0.01$, $\mu^{13} = 0.05$, and $\mu^{23} = 0.40$

Calculate the probability that an Uninfected person today will reach Stage Two at the end of 10 years.

$$| \frac{1}{10} | \frac{1}{10$$

Bonus questions: 1 point each

State the first and last name of your Math 3631 instructor: Emil Valdez

State one reason why you would buy life insurance (now at your age while still in college - assume you can afford): Less expensive when bought at yours age

State one reason why insurers must hold reserves: need money to pay promised obligations

State one reason why insurers will be reluctant to issue you a policy, with the first premium payable a year from issue: alord laung free coverage for one year

State one reason why gross premium reserves are generally lower than net premium reserves (for the same type of coverage): <u>Need to recoup large</u> first year or acquisition expenses over policy duration

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK