MATH 3631 Actuarial Mathematics II Class Test 1 - 5:00-6:15 PM

Wednesday, 15 February 2017

Time Allowed: 1 hour Total Marks: 100 points

Please write your name and student number at the spaces provided:

Name:	EMIL	Student ID:	Suggested	Solutions

- There are ten (10) written-answer questions here and you are to answer all ten. Each question is worth 10 points.
- Please provide details of your workings in the appropriate spaces provided; partial points will be granted.
- Please write legibly.
- Anyone caught writing after time has expired will be given a mark of zero.

Question No. 1:

An insurance company sells N fully discrete whole life insurance policies with death benefit of 200, each with the same age x. You are given:

- The annual contract premium is 5.50 per policy.
- i = 0.05
- $A_x = 0.35$
- ${}^{2}A_{x} = 0.17$
- All policies have independent future lifetimes.
- The 95th percentile on a standard normal distribution is 1.645.

Determine the smallest N so that the company has at least a 95% probability of a gain from this portfolio of policies.

this portion of policies.

Let the loss per policy be
$$L_{0,i} = 200 \, \text{N}^{\text{KH}} - 5.5 \, \text{a}_{\text{KH}}$$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{d}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{6} \, \text{d}_{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{3} \, \text{V}^{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{3} \, \text{V}^{\text{KH}}$
 $= (200 + \frac{5.5}{3}) \, \text{V}^{\text{KH}} - \frac{5.5}{3} \, \text{V$

Question No. 2:

You are given the following information about a special fully discrete 2-payment, 2-year endowment life insurance on (45):

- The death benefit is 100 plus a return of all premiums accumulated with interest at an annual effective rate of 4%.
- The endowment benefit is 200.
- Mortality is based on: $q_{45} = 0.01$ $q_{46} = 0.02$
- i = 0.10
- Level premiums are calculated based on the equivalence principle.

Calculate the net annual premium for this insurance.

$$V = \frac{1}{1.10}$$

$$APV(FR) = P(1+V(.99))$$

$$APV(FR_0) = [100 + P(1.04)] \cdot V(.01) + [100 + P(1.04)] \times V(.99)(.02)$$

$$+ 200 \cdot V^2(.99)(.98)$$

$$P = \frac{100[V(.01) + V^2(.99)(.02)] + 200 \cdot V^2(.99)(.98)}{1 + V(.99) - 1.04V(.01) - [1.04^2 + 1.04] \cdot V^2(.99)(.02)}$$

$$= \frac{167.9091}{1.855828} = 87.78241$$

Question No. 3:

For a fully discrete whole life insurance issued to (40), you are given:

- The death benefit is 100.
- Mortality follows the Illustrative Life Table.
- i = 0.06

Calculate the net premium reserve at the end of 10 years.

$$P = 100 \frac{A_{40}}{\ddot{a}_{40}} = 100 \frac{.16132}{14.8166} = 1.088779$$

$$10V = APV(FB_{10}) - APV(FP_{10})$$

= $100 \text{ A} 50 - P \text{ C}_{50} = 100 (.24905) - P (13.2668)$
= 10.46039

OR WIT

$$10V = 100(1 - \frac{\ddot{a}_{50}}{\ddot{a}_{40}}) = 100(1 - \frac{13.2668}{14.8166})$$

$$= 10.45989$$

A40 = 16132 A40 = 14.8166

Question No. 4:

For a fully discrete whole life insurance of 100 on (40), you are given:

- First year expenses are 25% of the gross premium.
- Renewal expenses are 5% of the gross premium.
- Expenses are incurred at the beginning of the policy year.
- Gross premium is calculated according to the equivalence principle.
- Mortality follows the Illustrative Life Table with i=0.06.

Calculate the gross premium reserve at the end of the second year.

Let
$$G = gross$$
 annual parnium

 $G\ddot{a}_{40} = 100 \, A_{40} + .20G + .05G \ddot{a}_{40}$
 $G = \frac{100 \, A_{40}}{.95\ddot{a}_{40} - .20} = 1.162602$

Use first prinaple or recursion

2V = APV(FB2) + APV(FE2) - APV(FP2)

= 100 A42 + .05 G Ä42 - G Ä42

= 100 (.17636) - .95 (1.162602) (14.5510)

= 1.564827

Question No. 5:

For a fully discrete whole life insurance of 1 on (45), you are given:

- $q_{50} = 0.003$
- $A_{51} = 0.20$
- \bullet $^2A_{51} = 0.07$
- i = 0.05

• L_k is the insurer's prospective loss at time k for this policy.

Calculate $\frac{\operatorname{Var}(L_5)}{\operatorname{Var}(L_6)}$.

$$Var(L_{5}) = \frac{(1 + P45/d)^{2}(^{2}A_{50} - A_{50}^{2})}{(1 + P45/d)^{2}(^{2}A_{50} - A_{50}^{2})}$$

$$Var(L_{6}) = \frac{(1 + P45/d)^{2}(^{2}A_{50} - A_{50}^{2})}{(1 + P45/d)^{2}(^{2}A_{51} - A_{51}^{2})}$$

$$A_{50} = v q_{50} + v p_{50} A_{51} = v(.003) + v(.997)(.20) = 0.1927619$$

$$^{2}A_{50} = v^{2}q_{50} + v^{2}p_{50}^{2}A_{51} = v^{2}(.003) + v^{2}(.997)(.07) = 0.06602268$$

$$= \frac{0.06602268 - (0.1927619)^{2}}{107 - (.20)^{2}}$$

$$\frac{0.06602768-(0.1927619)}{107-(120)^2}$$

Question No. 6:

For a fully discrete whole life insurance of 1000 on (x), you are given:

- The gross premium reserve at duration 9 is 109 and at duration 10 is 124.
- $q_{x+9} = 0.003$
- i = 0.05
- Renewal expenses at the start of each year are 1 plus 2% of the gross premium.
- There are no associated expenses at death.

Calculate the annual gross premium.

$$ioV = \frac{(aV + G - 1 - .02G)(1.05) - 1000(.003)}{1 - .003}$$

Question No. 7:

For a 10-year endowment insurance on (50), you are given:

- The death benefit, payable at the end of the year of death, is equal to 100 plus the benefit reserve.
- The endowment benefit is 500, payable at the end of 10 years if alive.
- Level premiums, π , are payable annually at the beginning of each year.
- $q_{50+k} = 0.01$, for k = 0, 1, 2, ...
- i = 4%

Calculate π .

Use reassive fremula

$$0V = 0$$
 $1V = \pi(1.04) - (100 + 10 - 100)(01) = 1.04\pi - 100(.01)$
 $2V = (1.04\pi - 100(.01) + 1\pi)(1.04) - (100 + 2V - 2V).01$
 $= \pi(1.04^2 + 1.04) - 100(.01 + .01(1.04))$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$
 $10V = \pi[1.04^{10} + ... + 1.04] - 100(.01)[1 + 1.04 + ... + 1.04]$

Question No. 8:

For a life insurance policy issued to (50), you are given:

• Death benefit of 1 is payable at the end of the year of death.

- The benefit premium in year 11, payable at the beginning of the year, is 0.045.
- There are no expenses for this policy.
- The policy is still active after 10 years.
- Deaths are assumed to be uniformly distributed over integral ages.

•
$$q_{60} = 0.080$$

•
$$i = 0.05$$

•
$$_{10}V = 0.325$$

Calculate $_{10.75}V$.

$$|0.75| = \frac{(10) + P)(1+i)^{75} - .75 (60 \times 1)}{1 - .75 (60}$$

$$= \frac{(0.325 + 0.045)(1.05)^{75} - .75(.080)(1.05)^{-25}}{1 - .75(.080)}$$

$$= \frac{0.3245174}{0.94}$$

$$= 0.3452313$$

Question No. 9:

An insurer issued 4,000 fully discrete whole life insurance policies to lives all exactly age 50 on January 1, 2006. Each policy issued has a death benefit of 100,000 with an annual gross premium of 2,600.

You are given:

• The following values in Year 2015:

	anticipated	actual
Expenses as a percent of premium	0.05	0.06
Annual effective rate of interest	0.02	0.05
q_{59}	0.0085	0.0090

• The gross premium reserves per policy at the end of Year 2014 and Year 2015, respectively, are:

$$_{9}V = 17,033$$
 and $_{10}V = 19,206$

- A total of 3,851 remain in force at the beginning of Year 2015.
- Gains and losses are calculated in the following order: expenses then interest then mortality.

Calculate the gain (or loss) from each source (expensese, interest, mortality) for this portfolio of policies in Year 2015.

expenses:
$$3851 \left[2600 \left(.05 - .06 \right) \right] \left(1.02 \right) = -102,128.5$$
 loss interest: $3851 \left[17033 + 2600 \left(.94 \right) \right] \left(.05 - .02 \right) = 2,250,178$ Sair mortality: $3851 \left[100,000 - 19206 \right] \left(.0085 - .0090 \right) = -155,568.8$

Question No. 10:

XYZ Life Insurance Company issues 5,000 fully discrete whole life insurance policies of 10,000 to lives each age 50, with independent future lifetimes. You are given:

- The annual gross premium is 220 per policy.
- Each policy is assumed to incur an expense of 30 at the beginning of each year.
- Gross premiums and reserves are calculated using $q_{53} = 0.0068$ and i = 0.05.
- At the end of the third policy year:
 - i. The gross premium reserve per policy is 505.
 - ii. There are 4,900 policies in force.
- During the fourth policy year:
 - i. The actual expense incurred per policy was 28.
 - ii. There were a total of 40 actual deaths.
 - iii. The actual interest rate earned was 6.5%.

Calculate the total gain or loss for the fourth policy year.

$$4V^{E} = (505 + 220 - 30)(1.05) - 10000 950 = 666.2807$$

$$1 - 950$$
The reserves based on actual experience is
$$4V^{A} = (505 + 220 - 28)(1.065) - 10000 - 666.2807)(\frac{40}{4900})$$

$$= 10000 - 666.2807)(\frac{40}{4900})$$
The gard/loss for the 4th policy year is
$$-666.1114$$

$$4900 (1114) - 666.2807) = 212212017$$

EXTRA PAGE FOR ADDITIONAL OR SCRATCH WORK