Cksw‘,ihj basic saryivdl el

" [}t
> = 4
0 1

Multiple State Models

Lecture: Weeks 3-4 ned hsch
permend ohsckly

L,lt&,uﬁ‘lclmu erked My

Fagsf]) M2 gl
N[ ]/ 9 v} x@)
ne  TeLVUTy

w:ly mxj‘r by
UCONN.

Lecture: Weeks 3-4 (Math 3631) Policy Values Spring 2020 - Valdez 1/ 47



Chapter summary

Chapter summary

@ Multiple state models (also called transition models)

ek e s
e what are they? d\sci we S
~e actuarial applications - some examples _—t———

@ State space - ‘F‘“"‘i‘ ‘{0»*1#-‘»'") \ 3 L

@ Transition probabilities o t
e continuous and discrete time space — -

' —

@ Markov chains

e time homogeneous versus non-homogeneous Markov chains

o\ Cash flow/s and actuarial present value calculations in multiple state
models

o Chapter 8 (Dickson, et al.)
UCONN
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Introduction

Introduction

Prﬂmﬁm]

@ Multiple state models are probability models that describe the random
movements of:

a subject (often a person, but could be a machinery, organism, etc.)
among various states

@ Discrete time or continuous time and discrete state space

@ Examples include:

/

multiple decrement models

basic survival model

health-sickness model ©
disability model ~
pension models
multiple life models

long term care (or continuing care retirement communities, CCRCs)

models
UCONN
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Some actuarial applications

The basic survival model

alive (

3

) dead (d)

UCONN
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Some actuarial applications

The withdrawal-death model

withdrawal
dead
or surrender

(w) (d)

( ra
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Some actuarial applications

The permanent disability model

healthy (0)

disabled (1)

NS

dead (2)
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Some actuarial applications

The HIV-AIDS progression model

uninfected HIV positive AIDS
(0) (1) (2)
dead
3) st
%0 7! =0
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Notation

Corhiam ) Y (e sk

Notation — —
© + 0,44,
X/ Ak’
shty”

@ Assume a finite state space (total of n + 1 states): {0(7 1/,.. . ,n/}
@ In most actuarial applications, we need a reference age.
o Denote b@fhe age at which the multiple state process begins.
e z is the age at time ¢ = 0.
@ Denote by Y, (t) the state of the process at time t.

e This can take on possible values in the state space.
o The process can be denoted by {Y,(t), t > 0}.

UCONN
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¢ Markov chain models
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Continuous time models

Transition probabilities and forces of transition T
@ Transition probabilities: ‘)/
oD = Pr[Ya(t) = j|Y2(0) = ] ,/ L

e This is the probability that a life age x at time 0 is in state ¢ and will

be in state j after ¢ periods. ‘]
. . . . ':"“" -—'_QFJ
@ Force of transition (also called transition intensity): L
}kIJ i 1y for i # s
= lim — or i
X Ha h—0+ h f_i:]if ’ J

o This is defined only in the case where we have a continuous time
process.

e Analogous to the force of mortality in the basic survival model.
o It is understood that p%/ = 0 if it is not possible to transition from
state ¢ to state j at any time.
J ot any UCONN
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Continuous time models  some useful assumptions

Some assumptions —
—

¢

. A
@ Assumption 1: The@ property holds. (o Amv”?

—~———
PrYa(s+1t) = jlYa(s) =4, Ya(u) = k,0 < u < 5]
= Pr[Y,(s+ tz = j\Yx(s)/: i

@ Assumption 2: For any positive interval of time length (generally very
small) h, e )"
Su-\;ll

-

Pr[2 or more transitions within a time period of length h| :F/@
-

@ Assumption 3: For all states ¢ and j and all ages = > 0, tp? is a
differential function of ¢.

. - /
A 1) UP_\}
b
UCONN
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Continuous time models  some useful assumptions

Some useful approximation

We can express the transition probabilities in terms of the forces of
transition as

WPy = hug +o(h), 4
so that for very small values of h, we have the approximation

WPy = hpg.

UCONN
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Continuous time models occupancy probability

. W V4
The occupancy probabilit W "
-cupancy p Vg
7 4 e 4

When a person currently age x and is currently in state i, the probability
that the person continuously remains in the same state for a length of ¢
periods is called an occupancy probability.

For any state 7 in a multiple state model, the probability that (x) now in
state ¢ will remain in state ¢ for t years can be computed using:

<,
Sketch of proof will be dong in <{:Iass - also on pages 239 - 240.
Vo Ay
-, 2 W
e
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Continuous time models Kolmogorov's forward equations

Kolmogorov's forward equations

For a Markov process, transition probabilities can be expressed as
n
t+hpzcj = tp?g +h Z (tp; int - tp;f:ugwrt) + o(h).
k=0,k+#j

This leads us to the Kolmogorov's Forward Equations (KFE):

d i n o o

J_ k kj ij gk
%tpz - Z (tplx Moyt — tPz Mat-i—t) :
k=0,k#j
This set of differential equations’is used to solve for transition probabilities.

UCONN
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Continuous time models numerical evaluation

Numerical evaluation of transition probabilities

To solve for the set of KFE's for the transition probabilities, we can equate
o(h) — 0, especially if h is small, or equivalently use the approximation

d .. 1 . .
%tp?v] ~ 5 (t-i—hp;:] - tp;g) d
This is a similar approach used to approximate the solution to the Thiele's

differential equation for reserves

Method is called the\Euler's method. The primary differences are:

@ solution is performed recursively going forward with the boundary
conditions:
07T o, ifi#y
@ the process usually requires solving a number of equations.

UCONN
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Continuous time models illustration

lllustrative example from book

@ Consider Example 8.4 on page$ 254-255

UCONN
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Continuous time models health-sickness model

The health-sickness model

healthy (h) _sick (s)

dead (d) 2z

UCONN
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Continuous time models illustration

Example 8.5 from the book

Consider the health-sickness insurance model illustrated in Example 8.5
with

pdt = ay + byexp(ciz)
py’ = 010"

u?f = ag + byexp(cax)
pe = Hy

where

a1 =4 x 1074, by =3.4674 x 1075, ¢; = 0.138155
as =5 x 1074, by = 7.5868 x 1077, ¢9 = 0.087498

Verify the calculations of ;;p3) and 1Y, and follow the same procedure
to calculate p¥3.

UCONN
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Continuous time models illustration

Numerical process of solutions
One can verify that to solve for the desired probabilities, one solves the set

of Kolmogorov's forward equations

o0 L
- d g 01 10 00 /01 02
“E“’Tkj’—ué— 1 1P60) = P60 60+t — 1P6o (H60+¢ T He0+t)
«

d ol 00 01 01 /,.10 12
7tP60 = P60 Moo+t — ¢P6o (H60+¢ T Ho+t)
d o 00 02 01 12

gitP60 = 1Poo oo+t + P60 H60+t

Then use the numerical approximations:
00 01 .10 00 / 01 02
+Pgo + 1 [+ P80 1601+ — +Peo (K60t + Heort)]
01 00 01 01/ 10 12
+Pg0 + " [+ P6o 1601t — +Peo (Koot + Heot)]
02 00 02 01 12
1260 + [ 160 H60-+¢ T ¢760 Hoo-+¢)

00
t+hPe0 ~

Q

01
t+h P60
02 .
t+hPe0 ~
-0
UCONN

with initial boundary conditions: (pd) = 1, (pds = P93
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Detailed results with step size

Continuous time models

illustration

h=1/12 Wiy head

t Hg(l]u :“’g%+/, /1'(158+L .“’fli;zH»L LT’gg Lpg(l] J’g(z)
0 0.01420 0.01495 0.00142 0.01495 1.00000 0.00000 0.00000
1/12 0.01436 0.01506 0.00144 0.01506 0.99757 0.00118 0.00125
2/12 0.01453 0.01517 0.00145 0.01517 0.99512 0.00238 0.00250
3/12 0.01469 0.01527 0.00147 0.01527 0.99266 0.00358 0.00376
4/12 0.01485 0.01538 0.00149 0.01538 0.99018 0.00479 0.00503
5/12 0.01502 0.01549 0.00150 0.01549 0.98769 0.00601 0.00630
6/12 0.01519 0.01560 0.00152 0.01560 0.98518 0.00723 0.00759
7/12 0.01536 0.01571 0.00154 0.01571 0.98265 0.00847 0.00888
8/12 0.01554 0.01582 0.00155 0.01582 0.98011 0.00972 0.01017
9/12 0.01571 0.01593 0.00157 0.01593 0.97755 0.01097 0.01148
10/12 0.01589 0.01605 0.00159 0.01605 0.97497 0.01224 0.01279
11/12 0.01607 0.01616 0.00161 0.01616 0.97238 0.01351 0.01411
1 0.01625 0.01628 0.00162 0.01628 0.96977 0.01479 0.01544
2 0.01860 0.01772 0.00186 0.01772 0.93713 0.03089 0.03198
3 0.02129 0.01929 0.00213 0.01929 0.90200 0.04833 0.04967
4 0.02439 0.02101 0.00244 0.02101 0.86432 0.06712 0.06856
5 0.02794 0.02289 0.00279 0.02289 0.82407 0.08722 0.08872
6 0.03202 0.02493 0.00320 0.02493 0.78127 0.10855 0.11018
7 0.03671 0.02717 0.00367 0.02717 0.73601 0.13100 0.13299
8 0.04209 0.02961 0.00421 0.02961 0.68846 0.15435 0.15719
9 0.04826 0.03227 0.00483 0.03227 0.63886 0.17835 0.18279
10 0.05535 0.03517 0.00554 0.03517 0.58756 0.20263 0.20981
UCONN
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Continuous time models illustration

Additional problem

When you have the moment, try to calculate (using some software or a
spreadsheet) to estimate the transition probabilities given that at age 60,
the person is sick: ;ope9 and ;gpgs, and opg3

UCONN
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Continuous time models illustration

—_—
lllustrative example 1 @4“_@

Consider the health-sickness insurance model with: S [EJ

—

Wiy = 0040,

sh P

,LL50+t - 00057 ‘);k = .&0(3307

pld., = 0.010, and

sd Ss

= 0.020, s .

M50+t wfsy = 778 §00%

for all t > 0. Do the following;: , WS wd
Q Calculate | and 10@ %*F‘So ,ﬁ[pq?', 3&5* e

@ Write out the Kolmogorov's forward equations for solving the t-year
transition probabilities for a person age 50 who is currently healthy, ,
(consider all possible transitions; do not solve)d sh 5‘ > s

P ' at—tfsﬁ. Al P f"“

© Write out the Kolmogorov's forward equations for solving the t-year
~ transition probabilities for a person age 50 who is currently sick.
(consider all possible transitions; do not solve) UCONN
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Actuarial calculations illustration

lllustrative example 2 \\3 .)

Suppose that an insurer uses the health-sickness model to price a pollcy

You
o

{

that provides both sickness and death benefits to healthy lives aged@

are given: Y

The term of the policy is 25 years.

If the individual dies during the term of the policy, there is a death
benefit of $20.000_5ayab|e at the moment of death. An additional
$10,000 is payable if the individual is sick at the time of death.

If the individual becomes sick during the term of the policy, there is a
sickness benefit at the rate of $3,000/per year. No waiting period

before benefits are payable.
The premium rate is $600 payable annually by healthy policyholders.

Express the following in integral form using standard notation of transition
probabilities and forces of transitions:

@ _the actuarial present value at issue of future premiums;

@ the actuarial present value at issue of future death benefits; and

© the actuarial present value at issue of future sickness benefits. | yoonN
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Actuarial calculations health-sickness model ’J\LL_/\L\
e]

Policy values and Thiele's differential equations  +

Consider the health-sickness insurance model where we have a disability
income policy with a term for n years issued to a healthy lift

@ Premiums are payable continuously throughout the policy term at the
rate of P per year, while healthy.

@ Benefit in the form of an annuity is payable continuously at the rate
of B per year, while sick)

@ A lump sum benefit of S is payable immediately upon death within
the term of the policy.

Give an expression for the:
_@ policy value at time t for a healthy policyholder;
@ policy value at time t for a sick policyholder; and

© Thiele's differential equations for solving these policy values.

UCONN
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Thiele's Differential Equations  generalization

Generalization of Thiele's differential equations

@ Section 8.7.2, pages 266-267

@ General situation of an insurance contract issued within a more
general multiple state model

UCONN
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SOA question

SOA question #10, Spring 2018

A whole life policy with Critical lllness benefits is issued té_a Healthy life_
age@ The insurer uses the following multiple state model to value the

benefits: Y
< -0

Healthy Critically Tl

(0) (1) »[’a J
ety

A

Dead Dead
(2) (3)

The premium P is payable continuously while the policyholder is Healthy.

A benefit of 50,000 is paid immediately on diagnosis of Critical lllness

(Cl), with another 50,000 paid on death after Cl. If the policyholder dies

without a diagnosis, the full 100,000 is paid immediately on death.
UCONN
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SOA question

- continued (B—J D.)

m ™

ak s

You are given the following information: J -
z a0 A0 A AT AT
60 10.989 0.390 0.181 0.280 0.546
- \! l J l J
Cl.
Calculate P. APV(ED.) = APV(FDB) + ARV (F IB_N
°2 4 spooo Acy
]

— 00 o A
?qu > 30 ;%f /T

|

UCONN
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SOA question #12, Spring 2012

Employees in Company ABC can be in: State 0: Non-executive employee;
State 1: Executive employee; or State 2: Terminated from employment.

John joins Company ABC as a non-executive employee at age 30.
You are given:
e %1 =0.01 for all years of service
192 = 0.006 for all years of service
p'2 = 0.002 for all years of service

°
°
@ Executive employees never return to the non-executive employee state.
@ Employees terminated from employment never get rehired.

°

The probability that John lives to age 65 is 0.9, regardless of state.

Calculate the probability that John will be an executive employee of
Company ABC at age 65.

UCONN
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SOA question

SOA question #10, Fall 2013

For a multiple state model, you are given:

healthy (0) disabled (1)

NS

dead (2)

The following forces of transition:
1Pt = 0.02 1’ =0.03 ' =0.05

Calculate the conditional probability that a Healthy life on January 1, 2004
is still Healthy on January 1, 2014, given that this person is not Dead on
January 1, 2014.

UCONN
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SOA question

SOA question #3, Fall 2015 °

Johnny Vegas performs motorcycle jumps throughout the year and has
injuries in the course of his shows according to the following three-state
model:

State 0: No injuries
State 1: Exactly one injury
State 2: At least two injuries
You are given:
@ Transition intensities between States are per year.
o ud =0.03+0.06 x 2¢, for t >0
o uY? =2.718 ud, for t >0
e ut? =0.025, for t >0

Calculate the probability that Johnny, who currently has no injuries, will
sustain at least one injury in the next year.
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Discrete-time Markov chains transition probabilities

Transition probabilities - Markov Chains

@ Assume a finite state space: {0,1,2,...,n} and let Y;(k) be the

state at time k.
@ Basic Markov chain assumption:

Pr[Yz(k? + 1) = J’Ya:(k) = Z‘aYm(k - 1)7 <.
= Pr[Ya(k +1) = j|Ya(k) = ]

@ Notation of transition probabilities:

PrYa(k+1) = j|Yy (k) = i]

L
o/ QP qp
o QIO Qll
- <& (Qy)= ¥ k
“\u"“\'—

@ Transition probability matrix:0
,_-b\._/‘_‘-‘_.——_-__.

ray W\ QY QY

Lecture: Weeks 3-4 (Math 3631) Policy Values
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Discrete-time Markov chains homogeneous vs non-homogeneous

Homogeneous and non-homogeneous Markov chains

——

@ If the transition probability matri@depends on the time k, it is
said to be a non-homogeneous Markov Chain.

@ Othewise, it is called a homogeneous Markov Chain, and we shall
—— —
simply denote the transition probab|I|ty matrix

@ Define
(@D @ e G
Q 0 11 . TV _ ‘..
.Qu ) T .k r .k . r .k - kagm @uh;
In,O In,l .n,n
A7 A T
where

2QY = Pr[Yy(k+1) = j|Yu(k) =i
is the probability of going from state ¢ to state j in r steps. It is

sometimes written as TQ,(f’j)
UCONN
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Discrete-time Markov chains Chapman-Kolmogorov equations

—

Zm@. hl f@

Chapman-Kolmogorov equations

@ Discrete analogue of the Kolmogorov's forward equations.
@ Theorem:

rQr = Qk X Qpt1 X -+ X Qpgr—1
@ Chapman-Kolmogorov equations:

ij _
m4pQf = ZS mQp ka+m

@ In the case of homogeneous Markov Chains, we drop the subscript k

and simply write
rQ—QX---XQ—@

UCONN
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Discrete-time Markov chains Chapman-Kolmogorov equations

<am (1)=[c]
Example 1 5‘\34/

e Consider a critical illness model with 3 states: healthy (H), critically
ill (C) and dead (D)

@ Suppose you have the@arkov Chain with transition
matrix P

= —

H C D
,H (092 0.05 0.03

~ C 1(0.00) 0.76 0.24
* 0 QW@ 100

@ What are the probabilities of being in each of the state at times

t=1,2,37
03 (T
Q=@ = ( ) NN
UCONN
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Discrete-time Markov chains Chapman-Kolmogorov equations

Example 2

@ Suppose that an auto insurer classifies its policyholders according to
Preferred (State #0) or Standard (State #1) status, starting at time
0 at the start of the first year when they are first insured, with
reclassifications occurring at the start of each new policy year.

@ You are given the following t-th year non-homogeneous transition

matrix:
Q - 0.65 0.35 n 1 0.15 —0.15
*~ 050 050 t+1\ —0.20 0.20
@ Given that an insured is Preferred at the start of the second year:

@ Find the probability that the insured is also Preferred at the start of the
third year.

@ Find the probability that the insured transitions from being Preferred at
the start of the third year to being Standard at the start of the fourth

year.
UCONN
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Discrete-time Markov chains Cash flows and actuarial present values

Cash flows and actuarial present values
@ We are interested in the actuarial present value of cash flows

i
t+k+1C J

which are the cash flows at time ¢ + k£ + 1 for movement from state ¢
(at time ¢t + k) to state j (at time ¢t + k + 1).

e Discount typically by v**1,

@ Theorem: Suppose that the subject is in state s at time t. The
actuarial present value (APV) of cash flows from state i to state j is
given by

o0
APV a: = Z (ka’ . Qﬁ—k) thi1CY x oF L
k=0
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Illustrative Examples example 1 "[ N @ @
. L1 | |
lllustrative example no. 1 , s 1 1 3
An insurer issues a special 3-year insurance contract to a high risk

individual with the following homogeneous Markov Chain model:

@ States: 0 = active, 1 = disabled, 2 = withdrawn, and 3 = dead.
@ Transition probability matrix: " ’
o 1 2 (3
0 /04 02 03 0.1
—>1(02 05 00 03 =St
2 0 0 1 0
3 0 0 O 1
@ Changes in state occur only at the end of the year. 7
@ The death benefit is @payable at the end of the year of death.
@ The insured is_qi%__l_)l__(_ed_-at the end of year 1. |

@ Assuming interest rate of 5% p.a., Calculate the actuarial present
value of the prospective death benefits at the b_eginn_ing‘o.f_ye-aﬁ%UNN

Lecture: Weeks 3-4 (Math 3631) Policy Values Spring 2020 - Valdez 38 / 47



Trﬁhﬁ;ll'mj
0->0
©->0>9
0—>0@->

P"‘oL
30
S(3) =y
11_(.[\ = 0T

Bt Dot Prdt

¥ looo » ¥ 2857143

} 17 oo vt S¢hs0




Illustrative Examples  example 2

lllustrative example no. 2 _
/
Consider a special three-year term insurance:

@ Insureds may be in one of three states at the beginning of each year:
active, disabled or dead. All insureds are initially active.

@ The annual transition probabilities are as follows:

o L 1
Active Disabled Dead
o Active 0.8 0.1 0.1
! Disabled 0.1 0.7 0.2
z Dead 0.0 0.0 1.0
<
e A $100, 000 benefit is payable at the end of the year of death whether

the insured was active or disabled.

@ Premiums are paid at the beginning of each year when active.
Insureds do not pay annual premiums when they are disabled.

@ Interest rate i = 10%.

Calculate the level annual net premium for this insurance.
Lecture: Weeks 3-4 (Math 3631)
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lllustrative Examples

lllustrative example no. 3

example 3

@ A machine can be in one of four possible states, labeled a, b, ¢, gnd
d. It migrates annually according to a Markov Chain with transitjon

probabilities:
a
v
—a [0.25
b | 0.50
c | 0.80
d \1.00

b
0.75
0.00
0.00
0.00

c
0.00
0.50
0.00
0.00

T
d G0V
0.00 '
1=51
0.00 —
0.20
0.00

@ At time t = 0, the machine is in State a. A salvage company will pay
500 at the end of 2 years if the machine is in State a.

@ Assuming ¢ = 0.05, calculate the actuarial present value at time ¢t = 0

of this payment.
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lllustrative Examples example 3

SOA essay question #1, Fall 2016

You are given the following 3-state Markov model:

\

State 1

State 2

For all states ¢ and j, and for all ages = > 0, tp;j is a differentiable
function of ¢, and for i # j:

(a) Define the symbols ,p%° and tpl, , and explain why these probabilities
are not equal for this model.
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lllustrative Examples example 3

- continued

(b) The probability ,, ,p° can be expressed as
t+hpgo = ,pP hpg(_)” + ,pOt hpig_t. Use this equation to derive the
Kolmogorov forward differential equation for ,p2°.
(c) You are also given:
(i) w24, =05, forallt
(i) pQi, = kt, forall t
(ii) 5pY° =0.165
Calculate k.
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Other transition models with actuarial applications
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Joint life model

z alive z alive
y alive y dead

(0) (1)

x dead x dead
y alive y dead

(2) (3)
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Multiple decrement model

decrement (1)

AN

decrement (2)

alive (0)

decrement (n)
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Accidental death model

alive

(@)

N

death from death from
accidental causes other causes

(ac) (na)
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A simple retirement model

withdrawn (w)

active (a) retired (7)

e
N

dead (d)
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