MATH 3630 - Actuarial Mathematics I Fall 2011 - Valdez Homework No. 5

due Wednesday, 5:00 PM, 16 November 2011

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: Suggested Sol	UTION Stude	nt ID: EMIL	_
I certify that this is my own work,	and that I have not cop	pied the work of another student.	
Signature:	Da	ate:	

Martha is currently age 50 who purchases a deferred whole life annuity-due policy which will pay her the following benefits:

- guaranteed annual payments of \$20,000 for 5 years, starting when she reaches age 65;
- annual payments of \$40,000 for the subsequent 10 years, if alive; and
- annual payments of \$75,000, if alive, thereafter.

You are given:

- Mortality follows the Standard Ultimate Survival Model. [see attached]
- i = 5%

Calculate the actuarial present value of Martha's life annuity benefits.

APV (annuity) =
$$15E_{50}(20,000\ \mathring{a}_{51})$$

 $+ 20E_{50}(40,000\ \mathring{a}_{70} + 35,000\ 10E_{70}\ \mathring{a}_{80})$
 $= 10,000\left[2_{15}E_{50}\ \mathring{a}_{51} + 20E_{50}(4\mathring{a}_{70} + 3.5\ 10E_{70}\ \mathring{a}_{80})\right]$
 $15E_{50} = 5E_{50}\ 10E_{55} = 0.4615146$
 $\mathring{a}_{51} = \frac{1-V^{5}}{1-V} = \frac{1-(1.05)^{-5}}{1-(1.05)^{-1}} = 4.545951$
 $20E_{50} = 15E_{50}\ 5E_{65} = 0.3482358$
 $\mathring{a}_{70} = 12.0083$
 $10E_{70} = .50994$
 $\mathring{a}_{80} = 8.5484$
plug the value, to get

$$= 10,000 \left[z(0.4615146)(4.545951) + 0.3482358(4(12.0083) + 3.5(.50994)(8.5484) \right]$$

262,360