MATH 3630-Actuarial Mathematics I
 Fall 2011 - Valdez
 Homework No. 4
 due Monday, 5:00 PM, 31 October 2011

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: \qquad Student ID:

I certify that this is my own work, and that I have not copied the work of another student.

Signature:

\qquad Date: \qquad

Joshua, currently age 40 , just joined ABC company with a starting salary of $\$ 75,000$ per year. ABC provides a benefit, payable at the moment of his death, equal to 4 times his salary if he dies while employed with the company and before reaching retirement age 65. Assume that Joshua intends to work for the company until retirement age 65 .

You are given:

- Mortality follows de Moivre's law with $\omega=100$.
- $\delta=7 \%$

1. Suppose that Joshua's salary increases continuously at an annual rate of 4%, that is, his salary at time t from start of employment is

$$
75000 \mathrm{e}^{0.04 t}, \quad \text { for } t \geq 0
$$

(a) Express the present value random variable of Joshua's death benefits.
(b) Calculate the actuarial present value of his death benefits.
(c) Calculate the variance of the present value of his death benefits.
2. Now, suppose that his salary rather increases compoundedly at an annual rate of 4% at the end of each year, that is, his salary at time k from start of employment is

$$
75000(1.04)^{k}, \quad \text { for } k=0,1,2, \ldots
$$

His death benefit is still payable at the moment of death.
(a) Calculate the actuarial present value of his death benefits.
(b) Calculate the variance of the present value of his death benefits.
3. Explain the difference between the two actuarial present values.

