MATH 3630 - Actuarial Mathematics I Fall 2009 - Valdez Homework No. 4 due Monday, 6:50 PM, 16 November 2009

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: SUGGESTED SOLUTIONS S	Student ID: CMIL
I certify that this is my own work, and that I have not copied the work of another student.	
Signature:	Date:

A special whole life annuity-immediate is issued to age 35 with the following decreasing scale of benefit payments:

age	payments
35-45	20
45-60	15
60 & later	10

Assume the benefits are payable annually and that:

- mortality follows the Illustrative Life Table; and
- i = 6%.

Calculate the actuarial present value of these annuity payments. (Your answer must be a number!)

Because table gives life annuity-due values, may be better to view the payments at age 36 and then discount with life to age 35. In effect, we have

10

£ 1000

APV(annity)=, E35 (10 936 + 5 936:25) + 5 9 36:25)

$$\ddot{G}_{36} = 15.2870 \qquad (directly from table)$$

$$\ddot{G}_{36} : \overline{z51} = \ddot{G}_{36} - 25 E_{36} \ddot{G}_{61}$$

$$= 15.2870 - \left(\frac{738.16}{1000}\right) \left(\frac{271.12}{1000}\right) \left(\frac{10.9041}{1000}\right) = 13.10476$$

$$\ddot{G}_{36} : \overline{101} = \ddot{G}_{36} - 10E_{36} \ddot{G}_{46}$$

$$= 15.2870 - \left(\frac{542.11}{1000}\right) \left(\frac{13.9546}{1000}\right) = 7.722072$$

Thus

APV (annuity) =
$$\sqrt{r_{35}}$$
 (10(15.2870) + 5(13.10476) + 5(7.722072))
 $\frac{1}{1.06}$ (1-2.01)