MATH 3630-Actuarial Mathematics I
 Fall 2011 - Valdez
 Homework No. 3
 due Wednesday, 5:00 PM, 19 October 2011

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: \qquad Student ID: \qquad
I certify that this is my own work, and that I have not copied the work of another student.
Signature: \qquad Date: \qquad

You are given that for a whole life insurance issued to (x) that pays $\$ 100$ at the moment of death:

- The actuarial present value of the policy is $\$ 60.00$ based on a constant force of mortality μ and a constant force of interest equal to 0.02 .
- The actuarial present value of the policy is $\$ 63.64$ based on a constant force of mortality $\mu+c$ and a constant force of interest equal to 0.02 .

1. Determine the values of μ and c.
2. Calculate the actuarial present value of the policy based on a constant force of mortality μ and a constant force of interest $0.02+c$, where μ and c are the constants determined in 1 .
3. Calculate the actuarial present value of the policy based on the force of mortality

$$
\mu_{x+t}= \begin{cases}\mu, & \text { for } 0<t \leq 15 \\ \mu+c, & \text { for } t>15\end{cases}
$$

and the force of interest

$$
\delta_{t}= \begin{cases}0.02+c, & 0<t \leq 15 \\ 0.02, & \text { for } t>15\end{cases}
$$

where μ and c are the constants determined in 1 .

