MATH 3630 - Actuarial Mathematics I Fall 2009 - Valdez Homework No. 1

due Wednesday, 6:50 PM, 16 September 2009

Please return this page with your signature. Please write your name and student number at the spaces provided:

Name: <u>504)110H5</u>	Student ID:
I certify that this is my own work, and that I have	e not copied the work of another student.
Signature:	Date:

In a certain population where 1/3 are females and 2/3 are males, the force of mortality for a female newborn is given by

$$\mu_x^{\mathrm{F}} = \frac{1}{2}x \quad \text{for } x \ge 0, \dots, \dots$$

and that for a male newborn is

$$\mu_x^{\rm M} = \frac{8}{9}x \quad \text{for } x \ge 0.$$

For a randomly selected member of this population, calculate $_{1|2}q_3$ and interpret this probability.

For a randomly selected member of this population, calculate
$$_{12}q_3$$
 and interpret this probability.

Female \Rightarrow $S_{x}(x) = e^{-\int_{0}^{x} \frac{1}{2}zdz} = e^{-\frac{1}{4}x^2}$

Male \Rightarrow $S_{x}(x) = e^{-\int_{0}^{x} \frac{1}{2}zdz} = e^{-\frac{1}{4}x^2}$

Male \Rightarrow $S_{x}(x) = e^{-\int_{0}^{x} \frac{1}{2}zdz} = e^{-\frac{1}{4}x^2}$

Therefore \Rightarrow $12q_3 = \frac{1}{2} = \frac{1}$

caes 4 and 6.