Exercise 6.9

Let G the required gross monthly premium.
The APV of the 20-year deferred annuity benefits with an initial annual payment of 50,000 increasing by 2% thereafter is given by

$$
\begin{aligned}
\mathrm{APV}(\text { benefits }) & =\sum_{20}^{\infty} 50000(1.02)^{k-20} v^{k}{ }_{k} p_{[40]} \\
& =\frac{50000}{1.02^{20}}\left[\sum_{20}^{\infty}(1.02 v)^{k}{ }_{k} p_{[40]}\right] \\
& =\frac{50000}{1.02^{20}}\left(20 \mid \ddot{a}_{[40]}\right)_{i_{1}},
\end{aligned}
$$

where $\left({ }_{20 \mid} \ddot{a}_{[40]}\right)_{i_{1}}$ is a 20-year deferred annuity evaluated at interest rate $i_{1}=(1.05 / 1.02)-1$. It can be verified that based on the Standard Select Survival Model, we have

$$
\left({ }_{20 \mid} \ddot{a}_{[40]}\right)_{i_{1}}=10.18434
$$

The APV of the expenses can be found using

$$
\begin{aligned}
\text { APV }(\text { expenses }) & =0.025(50000)+0.15 G+0.05(12 G) \ddot{a}_{[40]: 20 \mid}^{(12)}+\sum_{0}^{\infty} 20(1.03)^{k+1} v^{k+1}{ }_{k} p_{[40]} q_{[40]+k} \\
& =1250+0.15 G+0.60 G \ddot{a}_{[40]: 20 \mid}^{(12)}+20\left(A_{[40]}\right)_{i_{2}}
\end{aligned}
$$

where $\left(A_{[40]}\right)_{i_{2}}$ is a whole life insurance of 1 with benefit payable at the end of the year of death, evaluated at interest rate $i_{2}=(1.05 / 1.03)-1$. It can be verified that based on the Standard Select Survival Model, we have

$$
\left(A_{[40]}\right)_{i_{2}}=0.4245105 .
$$

The APV of the monthly gross premiums is given by

$$
\mathrm{APV}(\text { premiums })=12 G \ddot{a}_{[40]: 20]}^{(12)},
$$

where we can approximate the temporary annuity using the Woolhouse formula, with three terms:

$$
\ddot{a}_{[40]: 20]}^{(12)} \approx \ddot{a}_{[40]: \overline{20}}-\frac{11}{24}\left(1-{ }_{20} E_{[40]}\right)-\frac{12^{2}-1}{12\left(12^{2}\right)}\left[\delta+\mu_{[40]}-{ }_{20} E_{[40]}\left(\delta+\mu_{60}\right)\right],
$$

where $\delta=\log (1.05)$ and

$$
\begin{aligned}
{ }_{20} E_{[40]} & =v^{20} \frac{\ell_{60}}{\ell_{[40]}}=(1.05)^{-20} \frac{96634.14}{99327.82}=0.3666686 \\
\ddot{a}_{[40]: 20]} & =\ddot{a}_{[40]}-{ }_{20} E_{[40]} \ddot{a}_{60}=18.45956-0.3666686(14.90407)=12.99471 \\
\mu_{[40]} & =(0.9)^{2}\left(A+B c^{40}\right)=0.0004128936 \\
\mu_{60} & =A+B c^{60}=0.003221528
\end{aligned}
$$

Plug these values, we get

$$
\ddot{a}_{[40]: 20]}^{(12)} \approx 12.70194
$$

Equating APV(benefits) + APV(expenses) with APV(premiums), we solve the monthly gross premium with

$$
\begin{aligned}
G & =\frac{\left(50000 / 1.02^{20}\right)\left({ }_{20} \ddot{a}_{[40]}\right)_{i_{1}}+1250+20\left(A_{[40]}\right)_{i_{2}}}{11.4 \ddot{a}_{[40]: \overline{20]}}^{(12)}-0.15} \\
& =\frac{\left(50000 / 1.02^{20}\right)(10.18434)+1250+20(0.4245105)}{11.4(12.70194)-0.15} \\
& =2377.754 .
\end{aligned}
$$

