Exercise 6.7

(a) Let P be the net single premium. The net future loss random variable can be written as

$$
L_{0}=P v^{K+1} I(K<19)+40000 v^{20} \ddot{a}_{K+1-20}-P
$$

(b) Solving for P, we get

$$
P=P A_{[45]: \overline{20]}}^{1}+40000_{20} E_{[45]} \ddot{a}_{65}
$$

so that

$$
\begin{aligned}
P & =\frac{40000_{20} E_{[45]} \ddot{a}_{65}}{1-A_{[45]: 20 \mid}^{1}} \\
& =\frac{40000(0.35999)(13.550)}{1-(0.15149-0.35999(0.35477))}=\frac{195114.6}{0.9762237}=199,866.7
\end{aligned}
$$

(c) With the 5 year guarantee, the actuarial present value of benefits can be expressed as

$$
\mathrm{APV}(\text { benefits })=P A_{[45]: 20]}^{1}+40000_{20} E_{[45]}\left(\ddot{a}_{\overline{5}]}+{ }_{5} E_{65} \ddot{a}_{70}\right)
$$

so that

$$
\begin{aligned}
P & =\frac{40000_{20} E_{[45]}\left(\ddot{a}_{5]}+{ }_{5} E_{65} \ddot{a}_{70}\right)}{1-A_{[45]: 20]}^{1}} \\
& =\frac{40000(0.35999)\left(\frac{1-v^{5}}{d}+0.75455(12.008)\right)}{1-(0.15149-0.35999(0.35477))} \\
& =\frac{195929.4}{0.9762237}=200,701.4
\end{aligned}
$$

