Exercise 6.4

(a) Let P be the required annual benefit premium. The loss-at-issue random variable can be written as

$$
\begin{aligned}
L_{0} & =\mathrm{PVFB}_{0}-\mathrm{PVFP}_{0} \\
& = \begin{cases}1000 v^{K+1}-P \ddot{a}_{\overline{K+1}}, & \text { for } K=0,1, \ldots, 9 \\
-P \ddot{a}_{\overline{10}}, & \text { for } K=10,11, \ldots\end{cases} \\
& =1000 v^{K+1} I(K<10)-P\left[\ddot{a}_{\overline{K+1}} I(K<10)+\ddot{a}_{\overline{10}} I(K \geq 10)\right]
\end{aligned}
$$

(b) According to the equivalence principle, we set $\mathrm{E}\left[L_{0}\right]=0$ to solve for P :

$$
P=1000 \times \frac{A_{[50]: \overline{10}}^{1}}{\ddot{a}_{[50]: 10]}},
$$

where

$$
\begin{aligned}
{ }_{10} E_{[50]} & =v^{10}{ }_{10} p_{[50]}=v^{10} \frac{\ell_{60}}{\ell_{[50]}}=(1.05)^{-10} \frac{96634.14}{98552.51}=0.6019631, \\
\ddot{a}_{[50]: \overline{10]}} & =\ddot{a}_{[50]}-{ }_{10} E_{[50]} \ddot{a}_{60}=17.02835-0.6019631(14.90407)=8.056649, \text { and } \\
A_{[50]: \overline{10]}}^{1} & =A_{[50]: \overline{10]}}-{ }_{10} E_{[50]}=\left(1-d \ddot{a}_{[50]: \overline{10}}\right)-{ }_{10} E_{[50]} \\
& =\left[1-\left(1-(1.05)^{-1}\right)(8.056649)\right]-0.6019631=0.01438689 .
\end{aligned}
$$

Therefore, we have

$$
P=1000 \times \frac{0.01438689}{8.056649}=178.5717
$$

