Exercise 6.3

(a) Let B be the amount of death benefit, payable at the end of year of death and $K=K_{[41]}$, the curtate future lifetime of select age 41 . Then the loss-at-issue random variable can be expressed as

$$
L_{0}=B v^{K+1}-350 \ddot{a} \overline{K+1}, \quad \text { for } K=0,1,2
$$

and $L_{0}=-350 \ddot{a}_{\overline{2}}$ for $K \geq 3$. Details for calculating B are summarized in the table below:

k	(1)	(2)	(3)	$(1) \times(2)$	$350 \times(1) \times(3)$
0	0.00113224	0.943396	1.00000	0.00107	0.39628
1	0.00187371	0.889996	1.94340	0.00167	1.27448
2	0.00219434	0.839619	2.83339	0.00184	2.17610
≥ 3	0.99479970	0.000000	2.83339	0.00000	986.53036
sum	1.00000			0.004578162	990.3772

where

$$
\begin{aligned}
& (1)=\operatorname{Pr}[K=k] \text { for } k=0,1,2 \text { and } \operatorname{Pr}[K \geq 3] \text { otherwise } \\
& (2)=v^{k+1} \text { for } k=0,1,2 \text { and } 0 \text { otherwise } \\
& (3)=\ddot{a}_{\overline{k+1}} \text { for } k=0,1,2 \text { and } \ddot{a}_{\overline{2}} \text { otherwise }
\end{aligned}
$$

The probabilities are computed based on

$$
\begin{aligned}
\operatorname{Pr}[K=0] & =\frac{d_{[41]}}{\ell_{[41]}}=\frac{113}{99802} \\
\operatorname{Pr}[K=1] & =\frac{d_{[41]+1}}{\ell_{[41]}}=\frac{187}{99802} \\
\operatorname{Pr}[K=2] & =\frac{d_{[41]+2}}{\ell_{[41]}}=\frac{219}{99802} \\
\operatorname{Pr}[K \geq 3] & =1-\frac{113+187+219}{99802}
\end{aligned}
$$

By the equivalence principle with $\mathrm{E}\left[L_{0}\right]=0$, we have

$$
B=\frac{990.3772}{0.004578162}=216,326.4
$$

One can also verify that you can compute the death benefit based on

$$
B=\frac{350 A_{[41]: \overline{3}]}^{1}}{\ddot{a}_{[41]: \overline{3}]}}=\frac{(350)(2.829649)}{0.004578162}=216,326.4 .
$$

(b) The loss-at-issue random variable now can be expressed as

$$
L_{0}=216326.4 v^{K+1}-350 \ddot{a}_{\overline{K+1}} \text { for } K=0,1,2
$$

and $L_{0}=-350 \ddot{a}_{\overline{2}}$ for $K \geq 3$. Details for calculating standard deviation of L_{0} are summarized in the table below:

k	$\operatorname{Pr}[K=k]$	loss	loss $\times \operatorname{Pr}[K=k]$	$\operatorname{loss}^{2} \times \operatorname{Pr}[K=k]$
0	0.00113224	203731.4910	230.6733	46995419.0
1	0.00187371	191849.5198	359.4703	68964214.7
2	0.00219434	180640.1130	396.3867	71603337.1
≥ 3	0.99479970	-991.6874	-986.5304	978329.8
sum	1.00000		0.0000	188541300.0

We indeed do not need the calculation of $\mathrm{E}\left[L_{0}\right]$ because according to the equivalence principle, this is zero, as also confirmed in the table above. Hence, the standard deviation of L_{0} is

$$
\mathrm{SD}\left[L_{0}\right]=\sqrt{\operatorname{Var}\left[L_{0}\right]}=\sqrt{188541300.0}=13,731.03 .
$$

(c) Note from the table that the loss-at-issue is positive for $k=0,1,2$; always a positive loss if death is prior to the end of the term of the contract. Thus, the required probability is

$$
\operatorname{Pr}\left[L_{0}>0\right]=\operatorname{Pr}[K \leq 2]=\frac{(113+187+219)}{99802}=0.005200297
$$

