Exercise 6.20

(a) Let P be the required annual premium. By the equivalence principle, we have

$$
P=250000 \frac{A_{[40]: \overline{20]}}}{\ddot{a}_{[40]: \overline{20}}}
$$

where

$$
\begin{aligned}
\ddot{a}_{[40]: \overline{20]}} & =\ddot{a}_{[40]}-{ }_{20} E_{[40]} \ddot{a}_{60}=\ddot{a}_{[40]}-v^{20} \frac{\ell_{60}}{\ell_{[40]}} \ddot{a}_{60} \\
& =18.45956-(1.05)^{-20} \frac{96634.14}{99327.82} 14.90407=12.99471
\end{aligned}
$$

and

$$
A_{[40]: \overline{20 \mid}}=1-(1-(1 / 1.05))(12.99471)=0.3812045
$$

giving us

$$
P=250000 \frac{0.3812045}{12.99471}=7333.842
$$

(b) Based on the equivalence principle, $\mathrm{E}\left[L_{0}\right]=0$ and since, in this case, we have

$$
L_{0}=\left(250000+\frac{P}{d}\right) v^{\min (K+1,20)}-\frac{P}{d},
$$

then
$\operatorname{Var}\left[L_{0}\right]=\left(250000+\frac{P}{d}\right)^{2} \operatorname{Var}\left[v^{\min (K+1,20)}\right]=\left(250000+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{[40]: \overline{20 \mid}}-\left(A_{[40]: \overline{20}}\right)^{2}\right]$, where

$$
\begin{aligned}
{ }^{2} A_{[40]: 20]} & ={ }^{2} A_{[40]}-v^{40} \frac{\ell_{60}}{\ell_{[40]}}{ }^{2} A_{60}+v^{40} \frac{\ell_{60}}{\ell_{[40]}} \\
& =0.02338-(1.05)^{-40} \frac{96634.14}{99327.82}(0.10834)+(1.05)^{-40} \frac{96634.14}{99327.82} \\
& =0.1466016
\end{aligned}
$$

so that the standard deviation of L_{0} is

$$
\begin{aligned}
\mathrm{SD}\left[L_{0}\right] & =\left(250000+\frac{7333.842}{1-(1 / 1.05)}\right) \sqrt{0.1466016-(0.3812045)^{2}} \\
& =14481.31
\end{aligned}
$$

The answer is off a bit from the textbook answer.
(c) For 10,000 identical, independent contracts, the 99 th percentile of the (aggregate) net future loss is given by

$$
z_{0.99} \times \sqrt{10000} \times \mathrm{SD}\left[L_{0}\right]=2.326(100)(14481.31)=3368353
$$

based on the Normal approximation with $z_{0.99}$ denoting the 99th percentile of a standard Normal. The answer does not match the textbook answer.

