Exercise 6.2

(a) Let P be the net single premium. The loss-at-issue random variable can be written as

$$
L_{0}=\mathrm{PVFB}_{0}-\mathrm{PVFP}_{0}=1000000 v^{K+1} I(K<5)-P
$$

(b) Solving for P, we get

$$
\begin{aligned}
P & =1000000 \times \bar{A}_{[40]: 5]}^{1} \\
& =1000000 \times \frac{i}{\delta}\left(A_{[40]}-{ }_{5} E_{[40]} A_{45}\right) \\
& =1000000 \times \frac{0.05}{\log (1.05)}[0.12097-0.78121(0.15161)]=2593.506
\end{aligned}
$$

(c) The event $L_{0}<0$ is equivalent to the event

$$
1000000 v^{K+1} I(K<5)-P<0
$$

When $K=4$, we can verify that $L_{0}=780932.7$ so that $K>5$. Therefore, we have

$$
\operatorname{Pr}\left[L_{0}<0\right]=\operatorname{Pr}[K>5]={ }_{5} p_{[40]}=\frac{\ell_{45}}{\ell_{[40]}}=\frac{99033.94}{99327.82}=0.9970413
$$

The contract makes a profit only if the person select age 40 will survive another 5 years, or will never die during the term of the policy.

