Exercise 6.18

With the extra risk, we have

$$
{ }_{t} p_{x}^{\prime}=\exp \left[-\int_{0}^{t} \mu_{x+s}^{\prime} d s\right]=\exp \left[-\int_{0}^{t}\left(\mu_{x+s}+\phi\right) d s\right]=\exp \left[-\int_{0}^{t} \mu_{x+s} d s\right] \cdot \mathrm{e}^{-\phi t}={ }_{t} p_{x} \cdot \mathrm{e}^{-\phi t}
$$

so that we have

$$
\begin{aligned}
\bar{A}_{x}^{\prime} & =\int_{0}^{\infty} v^{t}{ }_{t} p_{x}^{\prime} \mu_{x+t}^{\prime} d t \\
& =\int_{0}^{\infty} v^{t}{ }_{t} p_{x} \cdot \mathrm{e}^{-\phi t}\left(\mu_{x+t}+\phi\right) d t \\
& =\int_{0}^{\infty} \mathrm{e}^{-(\delta+\phi) t}{ }_{t} p_{x} \mu_{x+t} d t+\phi \int_{0}^{\infty} \mathrm{e}^{-(\delta+\phi) t}{ }_{t} p_{x} d t \\
& =\bar{A}_{x}^{j}+\phi \bar{a}_{x}^{j}
\end{aligned}
$$

where \bar{A}_{x}^{j} and $\phi \bar{a}_{x}^{j}$ are respectively, continuous whole life insurance and whole life annuity evaluated at the force of interest

$$
\delta^{\prime}=\delta+\phi .
$$

Equivalently, this leads to an annual effective interest rate of

$$
j=(1+i) \mathrm{e}^{\phi}-1
$$

