Exercise 6.16

For a whole life insurance of 150000 to (x), the net future loss random variable is

$$
\begin{aligned}
L_{0}^{n} & =150000 v^{K+1}-P \ddot{a}_{\overline{K+1}} \\
& =\left(150000+\frac{P}{d}\right) v^{K+1}-\frac{P}{d},
\end{aligned}
$$

where, based on the equivalence principle,

$$
P=150000 \frac{A_{x}}{\ddot{a}_{x}} .
$$

The variance of this future loss can be expressed as

$$
\begin{aligned}
\operatorname{Var}\left[L_{0}^{n}\right]= & \left(150000+\frac{P}{d}\right)^{2} \operatorname{Var}\left[v^{K+1}\right] \\
= & \left(150000+\frac{P}{d}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right] \\
= & (150000)^{2}\left(1+\frac{A_{x}}{d \ddot{a}_{x}}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right] \\
& \text { since } A_{x}+d \ddot{a}_{x}=1 \\
= & (150000)^{2}\left(\frac{1}{1-A_{x}}\right)^{2}\left[{ }^{2} A_{x}-\left(A_{x}\right)^{2}\right]
\end{aligned}
$$

The standard deviation of this future loss is therefore

$$
\operatorname{SD}\left[L_{0}^{n}\right]=(150000)\left(\frac{1}{1-0.0653}\right) \sqrt{\left[0.0143-(0.0653)^{2}\right]}=16076.72
$$

