Exercise 6.12

Let P be the annual premium determined according to the equivalence principle. Then

$$
P=\frac{A_{x}}{\ddot{a}_{x}}
$$

and

$$
L_{0}=v^{K+1}-P \ddot{a} \overline{K+1}=\left(1+\frac{P}{d}\right) v^{K+1}-\frac{P}{d}
$$

Let P^{*} be the annual premium determined according to $\mathrm{E}\left[L_{0}^{*}\right]=-0.50$. Then

$$
P^{*}=\frac{A_{x}+0.5}{\ddot{a}_{x}}
$$

and

$$
L_{0}^{*}=\left(1+\frac{P^{*}}{d}\right) v^{K+1}-\frac{P^{*}}{d}
$$

The ratio of the variances of the respective loss random variables is therefore given by

$$
\begin{aligned}
\frac{\operatorname{Var}\left[L_{0}^{*}\right]}{\operatorname{Var}\left[L_{0}\right]}= & \frac{\left[1+\left(P^{*} / d\right)\right]^{2} \operatorname{Var}\left[v^{K+1}\right]}{[1+(P / d)]^{2} \operatorname{Var}\left[v^{K+1}\right]} \\
= & \left(\frac{P^{*}+d}{P+d}\right)^{2}=\left(\frac{A_{x}+0.5+d \ddot{a}_{x}}{A_{x}+d \ddot{a}_{x}}\right)^{2} \\
& \text { since } A_{x}+d \ddot{a}_{x}=1 \\
= & (1.5)^{2}
\end{aligned}
$$

It follows therefore that

$$
\operatorname{Var}\left[L_{0}^{*}\right]=(1.5)^{2} \operatorname{Var}\left[L_{0}\right]=(1.5)^{2}(0.75)=1.6875
$$

