Exercise 6.11

Denote by P the single benefit premium for the annuity.
(a) The APV of the benefits is the single benefit premium:

$$
P=20000{ }_{30} E_{[35]} \ddot{a}_{65}+P A_{[35]: 30}^{1}
$$

Solving for P, we get

$$
\begin{aligned}
P & =\frac{20000_{30} E_{[35]} \ddot{a}_{65}}{1-A_{[35]: 30}^{1}} \\
& =\frac{20000(0.2198276)(13.54979)}{1-0.01848040}=60694,
\end{aligned}
$$

where we can verify that

$$
\begin{aligned}
{ }_{30} E_{[35]} & =v^{30} \frac{\ell_{65}}{\ell_{[35]}}=(1.05)^{-30} \frac{94579.73}{99549.01}=0.2198276 \\
\ddot{a}_{[35]: 30]} & =\ddot{a}_{[35]}-{ }_{30} E_{[35]} \ddot{6}_{65} \\
& =18.97415-0.2198276(13.54979)=15.99553 \\
A_{[35]: 30]}^{1} & =A_{[35]: \overline{30}}-{ }_{30} E_{[35]} \\
& =1-(1-(1 / 1.05))(15.99553)-0.2198276=0.01848040
\end{aligned}
$$

(b) Total annuity payments therefore will not exceed P, the single benefit premium, if death is within the first 3 years after turning 65 . The APV of this benefit option therefore can be expressed as

$$
\begin{aligned}
\text { APV(option }) & ={ }_{30} E_{[35]} \times\left(40694 v q_{65}+20694 v^{2} p_{65} q_{66}+694 v^{3}{ }_{2} p_{65} q_{67}\right) \\
& ={ }_{30} E_{[35]} \times \frac{v}{\ell_{65}}\left(40694 d_{65}+20694 v d_{66}+694 v^{2} d_{67}\right) \\
& =(0.2198276) \times \frac{(1.05)^{-1}}{94579.73}\left(40694 \cdot 559.40+20694(1.05)^{-1} \cdot 622.28\right. \\
& =78.50247
\end{aligned}
$$

Thus, the revised premium is $\mathrm{P}+\mathrm{APV}($ option $)=60694+78.50247=60772.50247$. Answer slightly different from the textbook.

