Exercise 5.2

(a) Y is the present value random variable associated with an annuity that pays continuously at the rate of $\$ 1$ per year where the payment starts at the moment of death of (x) continuing until the end of year n, provided (x) dies before the end of n years.
(b) Notice that we can express

$$
\begin{aligned}
v^{T} \bar{a} \overline{n-T \mid} & =v^{T} \frac{1-v^{n-T}}{\delta}=\frac{v^{T}-v^{n}}{\delta} \\
& =\frac{1-v^{n}}{\delta}-\frac{1-v^{T}}{\delta}=\bar{a}_{\bar{n} \mid}-\bar{a}_{\bar{T}}
\end{aligned}
$$

Thus, we can write $Y=\bar{a}_{\bar{n} \mid}-Y_{1}$ where

$$
Y_{1}= \begin{cases}\bar{a}_{\bar{T}}, & \text { for } T \leq n \\ \bar{a}_{\bar{n}}, & \text { for } T>n\end{cases}
$$

is the present value random variable for an n-year temporary continuous life annuity on (x). The result immediately follows:

$$
\mathrm{E}[Y]=\bar{a}_{\bar{n} \mid}-\bar{a}_{x: \bar{n}} .
$$

(c) The first term, $\bar{a}_{\bar{n}}$, pays a guaranteed benefit of $\$ 1$ per year for n years while the second term, $\bar{a}_{x: \bar{n}}$, pays an annuity of $\$ 1$ per year while (x) is alive within the next n years. The difference therefore is the Family Income Benefit that pays $\$ 1$ starting at the moment of death of (x) continuing until the end of n years, provided (x) does not survive to reach $x+n$.

