Exercise 5.15

Recall from basic interest theory the following relationships:

$$
\begin{aligned}
& i=e^{\delta}-1, \quad i^{(m)}=m\left(e^{\delta / m}-1\right) \\
& d=1-e^{-\delta}, \quad \text { and } \quad d^{(m)}=m\left(1-e^{-\delta / m}\right)
\end{aligned}
$$

(a) Write $\alpha(m)$ as a function of δ :

$$
\alpha(m)=\frac{i}{i^{(m)}} \cdot \frac{d}{d^{(m)}}=\frac{e^{\delta}-1}{m\left(e^{\delta / m}-1\right)} \cdot \frac{1-e^{-\delta}}{m\left(1-e^{-\delta / m}\right)}=\frac{1}{m^{2}} e^{\delta[(1 / m)-1]}\left(\frac{e^{\delta}-1}{e^{\delta / m}-1}\right)^{2}
$$

Let this be $g_{1}(\delta)$ and use Taylor's series expansion to express g_{1} in terms of powers of δ. It is a very tedious exercise to even show that $g_{1}(0)=1, g_{1}^{\prime}(0)=0$ and $g_{1}^{\prime \prime}(0)=$ $\left(m^{2}-1\right) /\left(6 m^{2}\right)$ so that we can write

$$
\alpha(m)=g_{1}(0)+g_{1}^{\prime}(0) \delta+\frac{1}{2} g_{1}^{\prime \prime}(0) \delta^{2}+\cdots=1+\frac{m^{2}-1}{12 m^{2}} \delta^{2}+\cdots
$$

Thus, we see that removing powers of 2 and higher, we get the approximation $\alpha(m) \approx 1$. One can also verify, using Mathematica for example, that

$$
\alpha(m)=1+\frac{m^{2}-1}{12 m^{2}} \delta^{2}+\frac{2 m^{4}-5 m^{2}+3}{720 m^{4}} \delta^{4}+\cdots
$$

(b) Similarly, write $\beta(m)$ as a function of δ :

$$
\beta(m)=\frac{i-i^{(m)}}{i^{(m)} d^{(m)}}=\frac{\left(e^{\delta}-1\right)-\left[m\left(e^{\delta / m}-1\right)\right]}{m\left(e^{\delta / m}-1\right) \cdot m\left(1-e^{-\delta / m}\right)}=\frac{1}{m^{2}} e^{\delta / m} \cdot \frac{\left(e^{\delta}-1\right)-\left[m\left(e^{\delta / m}-1\right)\right]}{\left(e^{\delta / m}-1\right)^{2}}
$$

Let this be $g_{2}(\delta)$ and again use Taylor's series expansion. It is equally very tedious to show that $g_{2}(0)=(m-1) / 2 m, g_{2}^{\prime}(0)=\left(m^{2}-1\right) /\left(6 m^{2}\right)$ so that we can write

$$
\beta(m)=g_{2}(0)+g_{2}^{\prime}(0) \delta+\cdots=\frac{m-1}{2 m}+\frac{m^{2}-1}{6 m^{2}} \delta+\cdots
$$

Thus, we see that removing powers of 1 and higher, we get the approximation $\beta(m) \approx$ $(m-1) / 2 m$. For additional terms in the series expansion, one can verify, again with Mathematica for example, that we have

$$
\beta(m)=\frac{m-1}{2 m}+\frac{m^{2}-1}{6 m^{2}} \delta+\frac{24 m^{2}-1}{24 m^{2}} \delta^{2}+\frac{3 m^{4}-5 m^{2}+2}{360 m^{4}} \delta^{3}+\cdots
$$

The results in this problem indeed lead us to the common approximation

$$
\ddot{a}_{x}^{(m)} \approx \ddot{a}_{x}-\frac{m-1}{2 m} .
$$

