Exercise 5.14

Based on the Standard Ultimate Survival Model with $i=5 \%$, the following values have been calculated:

x	$10000 \cdot A_{x}$	$10000 \cdot{ }^{2} A_{x}$	\ddot{a}_{x}
60	2902.82	1083.41	14.904074
70	4281.76	2146.67	12.008303
80	5929.33	3813.41	8.548406

Denote by $Y_{i}(60), Y_{i}(70)$ and $Y_{i}(80)$ the present value random variables of the annuities respectively for ages 60, 70 and 80 . Then we have

$$
\begin{aligned}
& \mathrm{E}\left[Y_{i}(60)\right]=10000(14.904074)=149040.7, \\
& \operatorname{Var}\left[Y_{i}(60)\right]=\frac{10000(1083.41)-(2902.82)^{2}}{(.05 / 1.05)^{2}}=1061811597, \\
& \mathrm{E}\left[Y_{i}(70)\right]=10000(12.008303)=120083.0, \\
& \operatorname{Var}\left[Y_{i}(70)\right]=\frac{10000(2146.67)-(4281.76)^{2}}{(.05 / 1.05)^{2}}=1381755004, \\
& \mathrm{E}\left[Y_{i}(80)\right]=10000(8.548406)=85484.06
\end{aligned}
$$

and

$$
\operatorname{Var}\left[Y_{i}(80)\right]=\frac{10000(3813.41)-(5929.33)^{2}}{(.05 / 1.05)^{2}}=1312921276
$$

(a) The total outgo on the annuities can be computed based on

$$
Y=\sum_{i=1}^{40} Y_{i}(60)+\sum_{i=1}^{30} Y_{i}(70)+\sum_{i=1}^{10} Y_{i}(80) .
$$

Its expected value is thus

$$
\mathrm{E}[Y]=40(149040.7)+30(120083.0)+10(85484.06)=10418961
$$

(b) Its standard deviation is

$$
\mathrm{SD}[Y]=\sqrt{40(1061811597)+30(1381755004)+10(1312921276)}=311535.4 .
$$

(c) Using the Normal approximation, the 95-th percentile of Y is

$$
y_{0.95}=\mathrm{E}[Y]+1.645 \cdot \mathrm{SD}[Y]=10418961+1.645(311535.4)=10931437 .
$$

