Exercise 5.10

First, we make the following observations:

- For $(I A)_{x}$, this provides a death benefit of $\$ 1$ in the first year, increasing by $\$ 1$ each year thereafter, where benefit is payable at the end of the year of death. The present value random variable associated with this increasing insurance is

$$
Z=(K+1) v^{K+1}, \text { for } K=0,1,2, \cdots
$$

- For \ddot{a}_{x}, this provides a whole life annuity-due of $\$ 1$ with present value random variable

$$
Y_{1}=\ddot{a} \overline{K+1}, \text { for } K=0,1,2, \cdots
$$

- For $(I \ddot{a})_{x}$, this provides a whole life annuity-due of $\$ 1$ payable in the first year increasing by $\$ 1$ each year thereafter. The present value random variable can be expressed as

$$
Y_{2}=(I \ddot{a})_{\overline{K+1}}, \quad \text { for } K=0,1,2, \cdots
$$

Therefore, we see that

$$
\begin{aligned}
& Y_{1}-d Y_{2}= \ddot{a} \overline{K+1}-d(I \ddot{a}) \overline{K+1} \\
& \text { use the hint } \\
&= \ddot{a} \overline{K+1}-d\left[\frac{\ddot{a} \overline{K+1}}{}-(K+1) v^{K+1}\right. \\
& d \\
&= \ddot{a} \overline{K+1}-\ddot{a} \overline{K+1}+(K+1) v^{K+1} \\
&=(K+1) v^{K+1}=Z
\end{aligned}
$$

Taking the expectations of both sides, we get

$$
(I A)_{x}=\mathrm{E}[Z]=\mathrm{E}\left[Y_{1}\right]-d \mathrm{E}\left[Y_{2}\right]=\ddot{a}_{x}-d(I \ddot{a})_{x},
$$

which proves the desired result.

