Exercise 4.9

Start with

$$
\begin{aligned}
(I A)_{x: \bar{n} \mid}^{1} & =\mathrm{E}\left[(K+1) v^{K+1} I(K<n)\right] \\
& =\mathrm{E}\left[(n+K+1-n) v^{K+1} I(K<n)\right] \\
& =(n+1) \mathrm{E}\left[v^{K+1} I(K<n)\right]-\mathrm{E}\left[(n-K) v^{K+1} I(K<n)\right] \\
& =(n+1) A_{x: \bar{n} \mid}^{1}-\sum_{k=0}^{n-1}(n-k) v^{k+1}{ }_{k \mid} q_{x} .
\end{aligned}
$$

Now, let us focus on the second term of the equation above. This term involves payments at the end of the year of death of n if death occurs in the first year, $n-1$ if death occurs in the second year, decreasing by $\$ 1$ each year until maturity at which point the payment will only be $\$ 1$ if death occurs between $n-1$ and n. This policy is indeed called an n-year decreasing term insurance. Thus, we have

$$
\begin{aligned}
(D A)_{x: \bar{n}}^{1}= & \sum_{k=0}^{n-1}(n-k) v^{k+1}{ }_{k \mid} q_{x}=\sum_{k=0}^{n-1} \sum_{s=0}^{n-k-1} v_{k \mid}^{k+1} q_{x} \\
& =\sum_{s=0} \sum_{k=0}^{n-1} v^{k+1}{ }_{k \mid} q_{x}=\sum_{s=0}^{n-s-1} A_{x: \overline{n-s}}^{1} \\
= & A_{x: \bar{n}}^{1}+A_{x: \overline{n-1}}^{1}+\cdots+A_{x: \overline{1} \mid}^{1} \\
& \text { reverse the order of the terms in the sum } \\
= & A_{x: \overline{1} \mid}^{1}+A_{x: \overline{2} \mid}^{1}+\cdots+A_{x: \bar{n} \mid}^{1}=\sum_{k=1}^{n} A_{x: \bar{k} \mid}^{1},
\end{aligned}
$$

which proves the desired result. To interpret this result, it is better to rewrite the result as

$$
(I A)_{x: \bar{n} \mid}^{1}+\sum_{k=1}^{n} A_{x: \bar{k} \mid}^{1}=(n+1) A_{x: \bar{n}}^{1} .
$$

Comparing the payments between the two sides of the equation, the increasing term pays 1 , 2 , increasing by 1 each year until maturity of n years, and the decreasing term pays $n, n-1$, decreasing by 1 each year, until a payment of 1 remaining in the year before maturity. These two payments add up to payments of $n+1$ for n years which is what would be required from the right side of the equation.

