Exercise 4.5

(a) Endowment insurance is the sum of a term insurance and a pure endowment, that is, $A_{x: \bar{n} \bar{l}}=A_{x: \bar{n}}^{1}+A_{x: \bar{n} \mid}$. Therefore, we have

$$
\begin{aligned}
A_{x: \bar{n} \mid} & =\sum_{k=0}^{n-1} v^{k+1}{ }_{k \mid} q_{x}+v^{n}{ }_{n} p_{x} \\
& =\sum_{k=0}^{n-2} v^{k+1}{ }_{k \mid} q_{x}+v^{n}{ }_{n-1 \mid} q_{x}+v^{n}{ }_{n} p_{x} \\
& =\sum_{k=0}^{n-2} v^{k+1}{ }_{k \mid} q_{x}+v^{n}\left[{ }_{n-1} p_{x}\left(1-p_{x+n-1}\right)+{ }_{n} p_{x}\right] \\
& =\sum_{k=0}^{n-2} v^{k+1}{ }_{k \mid} q_{x}+v^{n}[{ }_{n-1} p_{x}-\underbrace{{ }_{n-1} p_{x} p_{x+n-1}}_{{ }_{n} p_{x}}+{ }_{n} p_{x}] \\
& =\sum_{k=0}^{n-2} v^{k+1}{ }_{k \mid} q_{x}+v^{n}{ }_{n-1} p_{x},
\end{aligned}
$$

which proves the result.
(b) The primary difference lies in the payment after period $n-1$. If (x) survives to live for $n-1$ years, he will receive a benefit at the end of year n if he dies the following year, and if he survives, he will receive the pure endowment. So once he reaches age $x+n-1$, a benefit of $\$ 1$ is payable at the end of year n, regardless of whether he survives or not. Hence, this explains the second term $v^{n}{ }_{n-1} p_{x}$ in the equation in part (a).

