Exercise 4.19

(a) At any age, the standard deviation is given by

$$
\begin{aligned}
\mathrm{SD} & =100000 \times \sqrt{{ }^{2} A_{30}-\left(A_{30}\right)^{2}} \\
& =100000 \times \sqrt{0.01109-\left(.07698^{2}\right)} \\
& =7,186.153
\end{aligned}
$$

(b) Before age 50, the standard deviation is given by

$$
\mathrm{SD}=100000 \times \sqrt{{ }^{2} A_{30: \overline{20}}^{1}-\left(A_{30: \overline{20}}^{1}\right)^{2}}
$$

where

$$
{ }^{2} A_{30: \overline{20 \mid}}^{1}={ }^{2} A_{30}-v^{20}{ }_{20} E_{30}{ }^{2} A_{50}=0.01109-\left(1 / 1.05^{20}\right)(0.37254)(0.05108)=0.003918041
$$ and

$$
A_{30: \overline{20 \mid}}^{1}=A_{30}-{ }_{20} E_{30} A_{50}=-.07698-(0.37254)(0.18931)=0.006454453
$$

Therefore,

$$
\mathrm{SD}=100000 \times \sqrt{0.003918041-(0.006454453)^{2}}=6226.059
$$

