Exercise 4.17

(a) Z_{1} is the present value random variable of an insurance that pays 20 at the end of the year of death of (x) if death occurs within the next 15 years, and 10 if death occurs thereafter. Z_{2} is the present value random variable of an insurance issued to (x) that pays nothing if death occurs within the first 5 years, 10 at the end of the year of death if it occurs the following 10 years, and a pure endowment of 10 at the end of 15 years.
(b) For Z_{1}, we have

$$
\mathrm{E}\left[Z_{1}\right]=20 \int_{0}^{15} v^{t}{ }_{t} p_{x} \mu_{x+t} d t+10 \int_{15}^{\infty} v^{t}{ }_{t} p_{x} \mu_{x+t} d t
$$

and for Z_{2}, we have

$$
\mathrm{E}\left[Z_{2}\right]=10 \int_{5}^{15} v^{t}{ }_{t} p_{x} \mu_{x+t} d t+10 \int_{15}^{\infty} v^{15}{ }_{t} p_{x} \mu_{x+t} d t .
$$

(c) There are several ways to write the actuarial present values associated with Z_{1} and Z_{2}. The following should not be difficult to verify:

$$
\mathrm{E}\left[Z_{1}\right]=20 \bar{A}_{x: \overline{15}}^{1}+10_{15 \mid} \bar{A}_{x}=20 \bar{A}_{x}-10_{15 \mid} \bar{A}_{x}=10 \bar{A}_{x}+10 \bar{A}_{x: 15 \mid}^{1}
$$

and

$$
\mathrm{E}\left[Z_{2}\right]=10{ }_{5} E_{x} \bar{A}_{x+5: \overline{10 \mid}}^{1}+10{ }_{5} E_{x}=10 \bar{A}_{x: \overline{15 \mid}}-10 \bar{A}_{x: 5 \mid}^{1} .
$$

(d) To derive an expression for the covariance of Z_{1} and Z_{2}, consider first its product:

$$
Z_{1} Z_{2}= \begin{cases}0, & \text { for } T \leq 5 \\ 200 v^{T}, & \text { for } 5<T \leq 15 \\ 100 v^{15} v^{T}, & \text { for } T>15\end{cases}
$$

Thus, we have

$$
\mathrm{E}\left[Z_{1} Z_{2}\right]=200{ }_{5} E_{x} \bar{A}_{x+5: \overline{10}}^{1}+200 v^{15}{ }_{15} \bar{A}_{x}=200{ }_{5} E_{x} \bar{A}_{x+5: 10}^{1}+200 v_{5}^{15} E_{x} \bar{A}_{x+15},
$$

so that

$$
\operatorname{Cov}\left[Z_{1}, Z_{2}\right]=\mathrm{E}\left[Z_{1} Z_{2}\right]-\mathrm{E}\left[Z_{1}\right] \mathrm{E}\left[Z_{2}\right],
$$

where the expectations of Z_{1} and Z_{2}, respectively, are in part (c).

