Exercise 4.16

(a)

$$A_{[40]+1:\overline{4}]} = \sum_{k=0}^{3} v^{k+1}{}_{k|}q_{[40]+1} + v^{4}{}_{4}p_{[40]+1} = \sum_{k=0}^{3} v^{k+1} \frac{d_{[40]+1+k}}{\ell_{[40]+1}} + v^{4} \frac{\ell_{45}}{\ell_{[40]+1}}$$

$$= \frac{1}{\ell_{[40]+1}} \left(vd_{[40]+1} + v^{2}d_{[40]+2} + v^{3}d_{[40]+3} + v^{4}\ell_{44} \right)$$

$$= \frac{1}{99899} \left[\frac{1}{1.06} (99899 - 99724) + \frac{1}{1.06^{2}} (99724 - 99520) + \frac{1}{1.06^{4}} 99288 \right]$$

$$= 0.792669$$

(b) Denote by Z the required present value random variable. The following table shows the details of the calculations:

k	$\Pr[K_{[40]} = k]$	z	$z \Pr[K_{[40]} = k]$	z^2	$z^2 \Pr[K_{[40]} = k]$
0	0.00101	0.00	0.0000	0	0
1	0.00175	88999.64	155.7494	7920936632	13861639
2	0.00204	83961.93	171.2823	7049605404	14381195
3	0.00232	79209.37	183.7657	6274123713	14555967
4	0.00255	74725.82	190.5508	5583947769	14239067
≥ 5	0.99033	0.00	0.0000	0	0
sum	1.00000		701.3483		57037868

The values in the table can be verified by noting that $\Pr[K_{[40]} = k] = \frac{d_{[40]+k}}{\ell_{[40]}}$ and that the values of Z are 0 in the first year (because it is one year deferred), $100000v^2$ in the second year, and so forth, with no payment if [40] survives to reach 5 years.

Thus, we find from this table that

$$E[Z] = \sum_{k=0}^{5} z \Pr[K_{[40]} = k] = 701.3483 \text{ and } E[Z^2] = \sum_{k=0}^{5} z^2 \Pr[K_{[40]} = k] = 57037868$$

so that

$$Var[Z] = E[Z^2] - (E[Z])^2 = 57037868 - (701.3483)^2 = 56545979.$$

Finally, we have the standard deviation: $SD[Z] = \sqrt{Var[Z]} = \sqrt{56545979} = 7519.706.$

(c) Looking up from the table in (b), we find that

 $\Pr[Z \le 85000] = 1 - \Pr[Z > 85000] = 1 - \Pr[K_{[40]} = 1] = 1 - 0.00175 = 0.99825.$

PREPARED BY E.A. VALDEZ