Exercise 4.16

(a)

$$
\begin{aligned}
A_{[40]+1: 4]} & =\sum_{k=0}^{3} v^{k+1}{ }_{k \mid} q_{[40]+1}+v^{4}{ }_{4} p_{[40]+1}=\sum_{k=0}^{3} v^{k+1} \frac{d_{[40]+1+k}}{\ell_{[40]+1}}+v^{4} \frac{\ell_{45}}{\ell_{[40]+1}} \\
= & \frac{1}{\ell_{[40]+1}}\left(v d_{[40]+1}+v^{2} d_{[40]+2}+v^{3} d_{[40]+3}+v^{4} \ell_{44}\right) \\
= & \frac{1}{99899}\left[\frac{1}{1.06}(99899-99724)+\frac{1}{1.06^{2}}(99724-99520)\right. \\
& \left.\quad+\frac{1}{1.06^{3}}(99520-99288)+\frac{1}{1.06^{4}} 99288\right] \\
= & 0.792669
\end{aligned}
$$

(b) Denote by Z the required present value random variable. The following table shows the details of the calculations:

k	$\operatorname{Pr}\left[K_{[40]}=k\right]$	z	$z \operatorname{Pr}\left[K_{[40]}=k\right]$	z^{2}	$z^{2} \operatorname{Pr}\left[K_{[40]}=k\right]$
0	0.00101	0.00	0.0000	0	0
1	0.00175	88999.64	155.7494	7920936632	13861639
2	0.00204	83961.93	171.2823	7049605404	14381195
3	0.00232	79209.37	183.7657	6274123713	14555967
4	0.00255	74725.82	190.5508	5583947769	14239067
≥ 5	0.99033	0.00	0.0000	0	0
sum	1.00000		701.3483		57037868

The values in the table can be verified by noting that $\operatorname{Pr}\left[K_{[40]}=k\right]=\frac{d_{[40]+k}}{\ell_{[40]}}$ and that the values of Z are 0 in the first year (because it is one year deferred), $100000 v^{2}$ in the second year, and so forth, with no payment if [40] survives to reach 5 years.

Thus, we find from this table that

$$
\mathrm{E}[Z]=\sum_{k=0}^{5} z \operatorname{Pr}\left[K_{[40]}=k\right]=701.3483 \text { and } \mathrm{E}\left[Z^{2}\right]=\sum_{k=0}^{5} z^{2} \operatorname{Pr}\left[K_{[40]}=k\right]=57037868
$$

so that

$$
\operatorname{Var}[Z]=\mathrm{E}\left[Z^{2}\right]-(\mathrm{E}[Z])^{2}=57037868-(701.3483)^{2}=56545979
$$

Finally, we have the standard deviation: $\mathrm{SD}[Z]=\sqrt{\operatorname{Var}[Z]}=\sqrt{56545979}=7519.706$.
(c) Looking up from the table in (b), we find that

$$
\operatorname{Pr}[Z \leq 85000]=1-\operatorname{Pr}[Z>85000]=1-\operatorname{Pr}\left[K_{[40]}=1\right]=1-0.00175=0.99825
$$

