Exercise 4.13

We can write X as $X=v^{\min (T, n)}=v^{T} I(T \leq n)+v^{n} I(T>n)$ and Y as $Y=v^{T} I(T \leq n)$. Now denote the present random variable associated with an n-year pure endowment of a unit issued to (x) by W so that $W=v^{n} I(T>n)$. We therefore have that

$$
\mathrm{E}[W]=v^{n}{ }_{n} p_{x}=0.30(0.80)=0.24
$$

and

$$
\operatorname{Var}[W]=v^{2 n}{ }_{n} p_{x}\left(1-{ }_{n} p_{x}\right)=(0.30)^{2}(0.80)(0.20)=0.0144 .
$$

Clearly, $X=Y+W$ so that

$$
\operatorname{Var}[X]=\operatorname{Var}[Y]+\operatorname{Var}[W]+2 \operatorname{Cov}[Y, W]
$$

where $\operatorname{Cov}[Y, W]=\mathrm{E}[Y W]-\mathrm{E}[Y] \mathrm{E}[W]=0-0.04(0.24)=-0.0096$. Solving for the variance of Y, we have

$$
\operatorname{Var}[Y]=\operatorname{Var}[X]-\operatorname{Var}[W]-2 \operatorname{Cov}[Y, W]=0.0052-0.0144+2(0.0096)=0.01
$$

