Exercise 4.10

One way to approach this problem is to use random variables. Recall that we can write

$$
T=K+S
$$

where $S \sim U(0,1)$ and K, S are independent in the case where UDD is assumed. Thus, we have

$$
\begin{aligned}
(\bar{I} \bar{A})_{x} & =\mathrm{E}\left[T v^{T}\right]=\mathrm{E}\left[(K+S) v^{K+S}\right] \\
& =\mathrm{E}\left[(K+1+S-1) v^{K+1+S-1}\right] \\
& =\mathrm{E}\left[(K+1) v^{K+1} v^{S-1}\right]+\mathrm{E}\left[v^{K+1}(S-1) v^{S-1}\right] \\
& =\mathrm{E}\left[v^{S-1}\right] \mathrm{E}\left[(K+1) v^{K+1}\right]+\mathrm{E}\left[(S-1) v^{S-1}\right] \mathrm{E}\left[v^{K+1}\right] \\
& =\mathrm{E}\left[v^{S-1}\right](I A)_{x}+\mathrm{E}\left[(S-1) v^{S-1}\right] A_{x}
\end{aligned}
$$

When S is uniformly distributed on $(0,1)$, it can be shown that

$$
\mathrm{E}\left[v^{S-1}\right]=\int_{0}^{1} v^{s-1} d s=\frac{i}{\delta}
$$

and that

$$
\mathrm{E}\left[(S-1) v^{S-1}\right]=\int_{0}^{1}(s-1) v^{s-1} d s=\frac{i-\delta e^{\delta}}{\delta^{2}}
$$

so that

$$
(\bar{I} \bar{A})_{x}=\frac{i}{\delta}(I A)_{x}+\frac{i-\delta e^{\delta}}{\delta^{2}} A_{x}
$$

