Exercise 3.9

(a) Let the constant force between ages $[x+k, x+k+1]$ be denoted by μ_{x+k}^{*} so that

$$
p_{x+k}=e^{-\mu_{x+k}^{*}}
$$

from which it follows that $\mu_{x+k}^{*}=-\log p_{x+k}$. Therefore, we have

$$
\begin{aligned}
\operatorname{Pr}\left[R_{x} \leq s \mid K_{x}=k\right] & =\frac{\operatorname{Pr}\left[R_{x} \leq s, K_{x}=k\right]}{\operatorname{Pr}\left[K_{x}=k\right]}=\frac{\operatorname{Pr}\left[k<T_{x} \leq k+s\right]}{\operatorname{Pr}\left[K_{x}=k\right]} \\
& =\frac{{ }_{k} p_{x} \cdot{ }_{s} q_{x+k}}{{ }_{k} p_{x} \cdot q_{x+k}}=\frac{{ }_{s} q_{x+k}}{q_{x+k}}=\frac{1-{ }_{s} p_{x+k}}{1-p_{x+k}} \\
& =\frac{1-\exp \left\{-\int_{0}^{s} \mu_{x+k}^{*} d z\right\}}{1-\exp \left\{-\mu_{x+k}^{*}\right\}}=\frac{1-\exp \left\{-\mu_{x+k}^{*} s\right\}}{1-\exp \left\{-\mu_{x+k}^{*}\right\}} .
\end{aligned}
$$

It is not difficult to see that we can also write this as

$$
\operatorname{Pr}\left[R_{x} \leq s \mid K_{x}=k\right]=\frac{1-\left(p_{x+k}\right)^{s}}{1-p_{x+k}}
$$

(b) For $0 \leq s \leq 1$, we note that

$$
\begin{aligned}
\mu_{x+k+s} & =-\frac{d}{d s} \log { }_{s} p_{x+k}=-\frac{d}{d s} \log \left(p_{x+k}\right)^{s} \\
& =-\frac{d}{d s} s \cdot \log p_{x+k}=-\log p_{x+k}=\mu_{x+k}^{*}
\end{aligned}
$$

and is therefore constant between any integral ages $x+k$ and $x+k+1$. The result therefore follows.

