Exercise 3.8

(a) Starting with $p_{x}^{*}=\ell_{x+1}^{*} / \ell_{x}^{*}$, we note that

$$
\ell_{x}^{*}=\frac{\ell_{x+1}^{*}}{p_{x}^{*}}=\frac{\ell_{x+1}^{*}}{p_{x+1}}=\ell_{x+1}^{*} \frac{\ell_{x+1}}{\ell_{x+2}}
$$

Because $\ell_{25}^{*}=98363=\ell_{26}$, it follows that $\ell_{x}^{*}=\ell_{x+1}$. Therefore, we have

$$
\ell_{24}^{*}=\ell_{25}=98444 \text { and } \quad \ell_{23}^{*}=\ell_{24}=98529
$$

Starting with $p_{[x]+2}^{*}=\ell_{x+3}^{*} / \ell_{[x]+2}^{*}$, we note that

$$
\ell_{[x]+2}^{*}=\frac{\ell_{x+3}^{*}}{p_{[x]+2}^{*}}=\frac{\ell_{x+3}^{*}}{{ }_{2} p_{x+2}}=\ell_{x+3}^{*} \frac{\ell_{x+2}}{\ell_{x+4}},
$$

from which it follows that $\ell_{[x]+2}^{*}=\ell_{x+2}$. Therefore, we have

$$
\ell_{[20]+2}^{*}=\ell_{22}=98700, \quad \ell_{[21]+2}^{*}=\ell_{23}=98615, \quad \text { and } \quad \ell_{[22]+2}^{*}=\ell_{24}=98529
$$

Starting with $p_{[x]+1}^{*}=\ell_{[x]+2}^{*} / \ell_{[x]+1}^{*}$, we note that

$$
\ell_{[x]+1}^{*}=\frac{\ell_{[x]+2}^{*}}{p_{[x]+1}^{*}}=\frac{\ell_{[x]+2}^{*}}{{ }_{3} p_{x-1}}=\ell_{[x]+2}^{*} \frac{\ell_{x-1}}{\ell_{x+2}},
$$

from which it follows that $\ell_{[x]+1}^{*}=\ell_{x-1}$. Therefore, we have

$$
\ell_{[20]+1}^{*}=\ell_{19}=98942, \quad \ell_{[21]+1}^{*}=\ell_{20}=98866, \quad \text { and } \quad \ell_{[22]+1}^{*}=\ell_{21}=98785 .
$$

Finally with $p_{[x]}^{*}=\ell_{[x]+1}^{*} / \ell_{[x]}^{*}$, we note that

$$
\ell_{[x]}^{*}=\frac{\ell_{[x]+1}^{*}}{p_{[x]}^{*}}=\frac{\ell_{[x]+1}^{*}}{{ }_{4} p_{x-5}}=\ell_{[x]+1}^{*} \frac{\ell_{x-5}}{\ell_{x-1}},
$$

from which it follows that $\ell_{[x]}^{*}=\ell_{x-5}$. Subsequently, we have

$$
\ell_{[20]}^{*}=\ell_{15}=99180, \quad \ell_{[21]}^{*}=\ell_{16}=99135, \quad \text { and } \quad \ell_{[22]}^{*}=\ell_{17}=99079
$$

We summarize these results in tabular form below.

x	$\ell_{[x]}^{*}$	$\ell_{[x]+1}^{*}$	$\ell_{[x]+2}^{*}$	ℓ_{x+3}^{*}	$x+3$
20	99180	98942	98700	98529	23
21	99135	98866	98615	98444	24
22	99079	98785	98529	98363	25

(b)

$$
\begin{aligned}
{ }_{2 \mid 38} q_{[21]+1}^{*} & ={ }_{2} p_{[21]+1}^{*}-{ }_{40} p_{[21]+1}^{*}=\frac{\ell_{24}^{*}-\ell_{62}^{*}}{\ell_{[21]+1}^{*}}=\frac{98444-86455}{98866}=0.1212651 \\
{ }_{40} p_{[22]}^{*} & =\frac{\ell_{62}^{*}}{\ell_{[22]}^{*}}=\frac{86455}{99079}=0.8725865 \\
{ }_{40} p_{[21]+1}^{*} & =\frac{\ell_{62}^{*}}{\ell_{[21]+1}^{*}}=\frac{86455}{98866}=0.8744664 \\
{ }_{40} p_{[20]+2}^{*} & =\frac{\ell_{62}^{*}}{\ell_{[20]+2}^{*}}=\frac{86455}{98700}=0.8759372 \\
{ }_{40} p_{22}^{*} & =\frac{\ell_{62}^{*}}{\ell_{22}^{*}}=\frac{86455}{98615}=0.8766922
\end{aligned}
$$

