Exercise 3.7

For $t=5,6, \ldots$, we are given $\mu_{x+t}^{A}=1.5 \mu_{x+t}$ so that

$$
p_{x+t}^{A}=\left(p_{x+t}\right)^{1.5}
$$

It follows therefore that the probability that an employee posted in country A at age 30 will survive to reach age 40 if she remains in that country is given by

$$
\begin{aligned}
{ }_{10} p_{[30]}^{A}= & { }_{5} p_{[30]}^{A} \cdot{ }_{5} p_{[30]+5}^{A} \\
= & p_{[30]}^{A} \cdot p_{[30]+1}^{A} \cdot p_{[30]+2}^{A} \cdot p_{[30]+3}^{A} \cdot p_{[30]+4}^{A} \cdot \underbrace{p_{35}^{A} \cdot p_{36}^{A} \cdot p_{37}^{A} \cdot p_{38}^{A} \cdot p_{39}^{A}} \\
= & {\left.\left[1-6\left(1-\frac{98362}{98424}\right)\right]\left[1-5\left(1-\frac{98296}{98362}\right)\right]\right]\left[1-4\left(1-\frac{98225}{98296}\right)\right] } \\
& \quad \times\left[1-3\left(1-\frac{98148}{98225}\right)\right]\left[1-2\left(1-\frac{98064}{98148}\right)\right]\left(\frac{97500}{98064}\right)^{1.5} \\
& \quad 0.9774967 .
\end{aligned}
$$

