Exercise 3.6

First we note that ${ }_{2 \mid 3} q_{[50]+1}={ }_{2} p_{[50]+1} \cdot{ }_{3} q_{53}$ from which we derive

$$
{ }_{3} p_{53}=1-{ }_{3} q_{53}=1-\frac{2 \mid 3 q[50]+1}{{ }_{2} p_{[50]+1}} .
$$

It is easy to verify the following holds:

$$
{ }_{3} p_{50}=p_{[50]} \cdot{ }_{2} p_{[50]+1}={ }_{2} p_{[50]} \cdot p_{[50]+2}
$$

from which we see that

$$
{ }_{2} p_{[50]+1}=\frac{{ }_{2} p_{[50]} \cdot p_{[50]+2}}{p_{[50]}} .
$$

Because

$$
{ }_{2 \mid} q_{[50]}={ }_{2} p_{[50]} \cdot q_{[50]+2}
$$

then it follows that

$$
p_{[50]+2}=1-\frac{{ }_{2 \mid} q_{[50]}}{{ }_{2} p_{[50]}}=\frac{{ }_{2} p_{[50]}-{ }_{2 \mid} q_{[50]}}{{ }_{2} p_{[50]}},
$$

and that

$$
{ }_{2} p_{[50]+1}=\frac{{ }_{2} p_{[50]}-{ }_{2 \mid} q_{[50]}}{p_{[50]}}=\frac{0.96411-0.02410}{1-0.01601}=0.9553044 .
$$

Finally, we have

$$
{ }_{3} p_{53}=1-\frac{0.09272}{0.9553044}=0.902942
$$

